RESUMEN
PURPOSE: Diffuse low-grade gliomas (dLGG) often have a frontal location, which may negatively affect patients' executive functions (EF). Being diagnosed with dLGG and having to undergo intensive treatment can be emotionally stressful. The ability to cope with this stress in an adaptive, active and flexible way may be hampered by impaired EF. Consequently, patients may suffer from increased mental distress. The aim of the present study was to explore profiles of EF, coping and mental distress and identify characteristics of each profile. METHODS: 151 patients with dLGG were included. Latent profile analysis (LPA) was used to explore profiles. Additional demographical, tumor and radiological characteristics were included. RESULTS: Four clusters were found: 1) overall good functioning (25% of patients); 2) poor executive functioning, good psychosocial functioning (32%); 3) good executive functioning, poor psychosocial functioning (18%) and; 4) overall poor functioning (25%). Characteristics of the different clusters were lower educational level and more (micro)vascular brain damage (cluster 2), a younger age (cluster 3), and a larger tumor volume (cluster 4). EF was not a distinctive factor for coping, nor was it for mental distress. Maladaptive coping, however, did distinguish clusters with higher mental distress (cluster 3 and 4) from clusters with lower levels of mental distress (cluster 1 and 2). CONCLUSION: Four distinctive clusters with different levels of functioning and characteristics were identified. EF impairments did not hinder the use of active coping strategies. Moreover, maladaptive coping, but not EF impairment, was related to increased mental distress in patients with dLGG.
Asunto(s)
Adaptación Psicológica , Neoplasias Encefálicas , Función Ejecutiva , Glioma , Distrés Psicológico , Humanos , Función Ejecutiva/fisiología , Glioma/psicología , Glioma/patología , Masculino , Femenino , Neoplasias Encefálicas/psicología , Neoplasias Encefálicas/patología , Adaptación Psicológica/fisiología , Adulto , Persona de Mediana Edad , Resiliencia Psicológica , Anciano , Estrés Psicológico/psicología , Clasificación del Tumor , Adulto Joven , Pruebas NeuropsicológicasRESUMEN
PURPOSE: Ventricle contact is associated with a worse prognosis and more aggressive tumor characteristics in glioblastoma (GBM). This is hypothesized to be a result of neural stem cells located around the lateral ventricles, in the subventricular zone. 11C Methionine positron emission tomography (metPET) is an indicator for increased proliferation, as it shows uptake of methionine, an amino acid needed for protein synthesis. This study is the first to study metPET characteristics of GBM in relation to ventricle contact. METHODS: A total of 12 patients with IDH wild-type GBM were included. Using MRI, the following regions were determined: primary tumor (defined as contrast enhancing lesion on T1) and peritumoral edema (defined as edema visible on FLAIR excluding the enhancement). PET parameters in these areas were extracted using PET fused with MRI imaging. Parameters extracted from the PET included maximum and mean tumor-to-normal ratio (TNRmax and TNRmean) and metabolic tumor volume (MTV). RESULTS: TNRmean of the primary tumor showed significantly higher values for the ventricle-contacting group compared to that for the non-contacting group (4.44 vs 2.67, p = 0.030). Other metPET parameters suggested higher values for the ventricle-contacting group, but these differences did not reach statistical significance. CONCLUSION: GBM with ventricle contact demonstrated a higher methionine uptake and might thus have increased proliferation compared with GBM without ventricle contact. This might explain survival differences and should be considered in treatment decisions.
Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/diagnóstico por imagen , Radioisótopos de Carbono , Glioblastoma/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Metionina , Tomografía de Emisión de PositronesRESUMEN
BACKGROUND: The CATNON trial investigated the addition of concurrent, adjuvant, and both current and adjuvant temozolomide to radiotherapy in adults with newly diagnosed 1p/19q non-co-deleted anaplastic gliomas. The benefit of concurrent temozolomide chemotherapy and relevance of mutations in the IDH1 and IDH2 genes remain unclear. METHODS: This randomised, open-label, phase 3 study done in 137 institutions across Australia, Europe, and North America included patients aged 18 years or older with newly diagnosed 1p/19q non-co-deleted anaplastic gliomas and a WHO performance status of 0-2. Patients were randomly assigned (1:1:1:1) centrally using a minimisation technique to radiotherapy alone (59·4 Gy in 33 fractions; three-dimensional conformal radiotherapy or intensity-modulated radiotherapy), radiotherapy with concurrent oral temozolomide (75 mg/m2 per day), radiotherapy with adjuvant oral temozolomide (12 4-week cycles of 150-200 mg/m2 temozolomide given on days 1-5), or radiotherapy with both concurrent and adjuvant temozolomide. Patients were stratified by institution, WHO performance status score, age, 1p loss of heterozygosity, the presence of oligodendroglial elements on microscopy, and MGMT promoter methylation status. The primary endpoint was overall survival adjusted by stratification factors at randomisation in the intention-to-treat population. A second interim analysis requested by the independent data monitoring committee was planned when two-thirds of total required events were observed to test superiority or futility of concurrent temozolomide. This study is registered with ClinicalTrials.gov, NCT00626990. FINDINGS: Between Dec 4, 2007, and Sept 11, 2015, 751 patients were randomly assigned (189 to radiotherapy alone, 188 to radiotherapy with concurrent temozolomide, 186 to radiotherapy and adjuvant temozolomide, and 188 to radiotherapy with concurrent and adjuvant temozolomide). Median follow-up was 55·7 months (IQR 41·0-77·3). The second interim analysis declared futility of concurrent temozolomide (median overall survival was 66·9 months [95% CI 45·7-82·3] with concurrent temozolomide vs 60·4 months [45·7-71·5] without concurrent temozolomide; hazard ratio [HR] 0·97 [99·1% CI 0·73-1·28], p=0·76). By contrast, adjuvant temozolomide improved overall survival compared with no adjuvant temozolomide (median overall survival 82·3 months [95% CI 67·2-116·6] vs 46·9 months [37·9-56·9]; HR 0·64 [95% CI 0·52-0·79], p<0·0001). The most frequent grade 3 and 4 toxicities were haematological, occurring in no patients in the radiotherapy only group, 16 (9%) of 185 patients in the concurrent temozolomide group, and 55 (15%) of 368 patients in both groups with adjuvant temozolomide. No treatment-related deaths were reported. INTERPRETATION: Adjuvant temozolomide chemotherapy, but not concurrent temozolomide chemotherapy, was associated with a survival benefit in patients with 1p/19q non-co-deleted anaplastic glioma. Clinical benefit was dependent on IDH1 and IDH2 mutational status. FUNDING: Merck Sharpe & Dohme.
Asunto(s)
Glioma/tratamiento farmacológico , Isocitrato Deshidrogenasa/genética , Temozolomida/administración & dosificación , Adolescente , Adulto , Anciano , Australia , Quimioterapia Adyuvante , Cromosomas Humanos Par 1/genética , Cromosomas Humanos Par 19/genética , Terapia Combinada , Dacarbazina/administración & dosificación , Dacarbazina/efectos adversos , Europa (Continente) , Femenino , Glioma/genética , Glioma/patología , Glioma/radioterapia , Humanos , Pérdida de Heterocigocidad/genética , Masculino , Persona de Mediana Edad , América del Norte , Radioterapia Conformacional , Adulto JovenRESUMEN
Somatic mutations in the isocitrate dehydrogenase genes IDH1 and IDH2 occur at high frequency in several tumour types. Even though these mutations are confined to distinct hotspots, we show that gliomas are the only tumour type with an exceptionally high percentage of IDH1R132H mutations. Patients harbouring IDH1R132H mutated tumours have lower levels of genome-wide DNA-methylation, and an associated increased gene expression, compared to tumours with other IDH1/2 mutations ("non-R132H IDH1/2 mutations"). This reduced methylation is seen in multiple tumour types and thus appears independent of the site of origin. For 1p/19q non-codeleted glioma (astrocytoma) patients, we show that this difference is clinically relevant: in samples of the randomised phase III CATNON trial, patients harbouring tumours with IDH mutations other than IDH1R132H have a better outcome (hazard ratio 0.41, 95% CI [0.24, 0.71], p = 0.0013). Such non-R132H IDH1/2-mutated tumours also had a significantly lower proportion of tumours assigned to prognostically poor DNA-methylation classes (p < 0.001). IDH mutation-type was independent in a multivariable model containing known clinical and molecular prognostic factors. To confirm these observations, we validated the prognostic effect of IDH mutation type on a large independent dataset. The observation that non-R132H IDH1/2-mutated astrocytomas have a more favourable prognosis than their IDH1R132H mutated counterpart indicates that not all IDH-mutations are identical. This difference is clinically relevant and should be taken into account for patient prognostication.
Asunto(s)
Astrocitoma/diagnóstico , Astrocitoma/genética , Neoplasias Encefálicas/genética , Metilación de ADN/genética , Isocitrato Deshidrogenasa/genética , Mutación , Neoplasias Encefálicas/diagnóstico , Humanos , Pronóstico , Tasa de SupervivenciaRESUMEN
Treatment evaluation of patients with glioblastomas is important to aid in clinical decisions. Conventional MRI with contrast is currently the standard method, but unable to differentiate tumor progression from treatment-related effects. Pseudoprogression appears as new enhancement, and thus mimics tumor progression on conventional MRI. Contrarily, a decrease in enhancement or edema on conventional MRI during antiangiogenic treatment can be due to pseudoresponse and is not necessarily reflective of a favorable outcome. Neovascularization is a hallmark of tumor progression but not for posttherapeutic effects. Perfusion-weighted MRI provides a plethora of additional parameters that can help to identify this neovascularization. This review shows that perfusion MRI aids to identify tumor progression, pseudoprogression, and pseudoresponse. The review provides an overview of the most applicable perfusion MRI methods and their limitations. Finally, future developments and remaining challenges of perfusion MRI in treatment evaluation in neuro-oncology are discussed. Level of Evidence: 3 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2019;49:11-22.
Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Glioblastoma/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Angiografía por Resonancia Magnética/métodos , Angiografía por Resonancia Magnética/normas , Medios de Contraste/farmacología , Progresión de la Enfermedad , Edema/diagnóstico por imagen , Humanos , Neuroimagen/métodos , Reproducibilidad de los ResultadosRESUMEN
BACKGROUND: The role of temozolomide chemotherapy in newly diagnosed 1p/19q non-co-deleted anaplastic gliomas, which are associated with lower sensitivity to chemotherapy and worse prognosis than 1p/19q co-deleted tumours, is unclear. We assessed the use of radiotherapy with concurrent and adjuvant temozolomide in adults with non-co-deleted anaplastic gliomas. METHODS: This was a phase 3, randomised, open-label study with a 2â×â2 factorial design. Eligible patients were aged 18 years or older and had newly diagnosed non-co-deleted anaplastic glioma with WHO performance status scores of 0-2. The randomisation schedule was generated with the electronic EORTC web-based ORTA system. Patients were assigned in equal numbers (1:1:1:1), using the minimisation technique, to receive radiotherapy (59·4 Gy in 33 fractions of 1·8 Gy) alone or with adjuvant temozolomide (12 4-week cycles of 150-200 mg/m2 temozolomide given on days 1-5); or to receive radiotherapy with concurrent temozolomide 75 mg/m2 per day, with or without adjuvant temozolomide. The primary endpoint was overall survival adjusted for performance status score, age, 1p loss of heterozygosity, presence of oligodendroglial elements, and MGMT promoter methylation status, analysed by intention to treat. We did a planned interim analysis after 219 (41%) deaths had occurred to test the null hypothesis of no efficacy (threshold for rejection p<0·0084). This trial is registered with ClinicalTrials.gov, number NCT00626990. FINDINGS: At the time of the interim analysis, 745 (99%) of the planned 748 patients had been enrolled. The hazard ratio for overall survival with use of adjuvant temozolomide was 0·65 (99·145% CI 0·45-0·93). Overall survival at 5 years was 55·9% (95% CI 47·2-63·8) with and 44·1% (36·3-51·6) without adjuvant temozolomide. Grade 3-4 adverse events were seen in 8-12% of 549 patients assigned temozolomide, and were mainly haematological and reversible. INTERPRETATION: Adjuvant temozolomide chemotherapy was associated with a significant survival benefit in patients with newly diagnosed non-co-deleted anaplastic glioma. Further analysis of the role of concurrent temozolomide treatment and molecular factors is needed. FUNDING: Schering Plough and MSD.
RESUMEN
PURPOSE: Response evaluation in patients with glioblastoma after chemoradiotherapy is challenging due to progressive, contrast-enhancing lesions on MRI that do not reflect true tumour progression. In this study, we prospectively evaluated the ability of the PET tracer 18F-fluorothymidine (FLT), a tracer reflecting proliferative activity, to discriminate between true progression and pseudoprogression in newly diagnosed glioblastoma patients treated with chemoradiotherapy. METHODS: FLT PET and MRI scans were performed before and 4 weeks after chemoradiotherapy. MRI scans were also performed after three cycles of adjuvant temozolomide. Pseudoprogression was defined as progressive disease on MRI after chemoradiotherapy with stabilisation or reduction of contrast-enhanced lesions after three cycles of temozolomide, and was compared with the disease course during long-term follow-up. Changes in maximum standardized uptake value (SUVmax) and tumour-to-normal uptake ratios were calculated for FLT and are presented as the mean SUVmax for multiple lesions. RESULTS: Between 2009 and 2012, 30 patients were included. Of 24 evaluable patients, 7 showed pseudoprogression and 7 had true progression as defined by MRI response. FLT PET parameters did not significantly differ between patients with true progression and pseudoprogression defined by MRI. The correlation between change in SUVmax and survival (p = 0.059) almost reached the standard level of statistical significance. Lower baseline FLT PET uptake was significantly correlated with improved survival (p = 0.022). CONCLUSION: Baseline FLT uptake appears to be predictive of overall survival. Furthermore, changes in SUVmax over time showed a tendency to be associated with improved survival. However, further studies are necessary to investigate the ability of FLT PET imaging to discriminate between true progression and pseudoprogression in patients with glioblastoma.
Asunto(s)
Didesoxinucleósidos , Progresión de la Enfermedad , Glioblastoma/diagnóstico por imagen , Tomografía de Emisión de Positrones , Adulto , Anciano , Proliferación Celular , Quimioradioterapia , Diagnóstico Diferencial , Femenino , Estudios de Seguimiento , Glioblastoma/patología , Glioblastoma/terapia , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Imagen MultimodalRESUMEN
The prognosis of central nervous system (CNS) relapse of systemic non-Hodgkin lymphoma is poor with 1-year survival historically at 0% to 20%. Aiming to improve these results, we performed a multicenter phase 2 study in patients with a CNS relapse, with or without concurrent systemic relapse. Treatment consisted of 2 cycles of R-DHAP alternating with high-dose methotrexate (MTX) and was combined with intrathecal rituximab. Responding patients received a third R-DHAP-MTX cycle followed by busulfan and cyclophosphamide myeloablative therapy and autologous stem cell transplantation. In patients with persistent cerebrospinal fluid lymphoma after cycle 1, the intrathecal rituximab was replaced by intrathecal triple therapy, with MTX, cytarabine, and dexamethasone. Thirty-six patients were included. Eighteen had evidence of cerebrospinal fluid lymphoma, 24 had brain parenchymal disease, and 20 (56%) had concurrent systemic disease. The overall response rate after 2 R-DHAP-MTX was 53% (19/36), with 22% (8/36) complete remission. Fifteen patients (42%) underwent a transplant. One-year progression-free survival was 19% (95% confidence interval, 9-34): 25% in patients without and 15% in patients with systemic disease. One-year overall survival was 25% (95% confidence interval, 12-40). This treatment regimen did not result in a major improvement of outcome of secondary CNS lymphoma, especially when concurrent systemic disease was present. Registered in the Dutch trial register www.trialregister.nl, NTR1757; EudraCT number 2006-002141-37.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Trasplante de Células Madre Hematopoyéticas/métodos , Linfoma no Hodgkin/tratamiento farmacológico , Metotrexato/uso terapéutico , Rituximab/uso terapéutico , Trasplante Autólogo/métodos , Adulto , Anciano , Neoplasias del Sistema Nervioso Central/mortalidad , Neoplasias del Sistema Nervioso Central/patología , Cisplatino/uso terapéutico , Citarabina/uso terapéutico , Dexametasona/uso terapéutico , Femenino , Humanos , Linfoma no Hodgkin/mortalidad , Linfoma no Hodgkin/patología , Masculino , Persona de Mediana Edad , Pronóstico , Adulto JovenRESUMEN
Glioblastoma multiforme (GBM) universally recurs with dismal prognosis. We evaluated the efficacy of standard treatment strategies for patients with recurrent GBM (rGBM). From two centers in the Netherlands, 299 patients with rGBM after first-line treatment, diagnosed between 2005 and 2014, were retrospectively evaluated. Four different treatment strategies were defined: systemic treatment (SYST), re-irradiation (RT), re-resection followed by adjuvant treatment (SURG) and best supportive care (BSC). Median OS for all patients was 6.5 months, and median PFS (excluding patients receiving BSC) was 5.5 months. Older age, multifocal lesions and steroid use were significantly associated with a shorter survival. After correction for confounders, patients receiving SYST (34.8%) and SURG (18.7%) had a significantly longer survival than patients receiving BSC (39.5%), 7.3 and 11.0 versus 3.1 months, respectively [HR 0.46 (p < 0.001) and 0.36 (p < 0.001)]. Median survival for patients receiving RT (7.0%) was 9.2 months, but this was not significantly different from patients receiving BSC (p = 0.068). Patients receiving SURG compared to SYST had a longer PFS (9.0 vs. 4.3 months, respectively; p < 0.001), but no difference in OS was observed. After adjustments for confounders, patients with rGBM selected for treatment with SURG or SYST do survive significantly longer than patients who are selected for BSC based on clinical parameters. The value of reoperation versus systemic treatment strategies needs further investigation.
Asunto(s)
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Recurrencia Local de Neoplasia/terapia , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Países Bajos , Estudios Retrospectivos , Análisis de Supervivencia , Resultado del Tratamiento , Adulto JovenRESUMEN
BACKGROUND: Temozolomide chemotherapy versus radiotherapy in patients with a high-risk low-grade glioma has been shown to have no significant effect on progression-free survival. If these treatments have a different effect on health-related quality of life (HRQOL), it might affect the choice of therapy. We postulated that temozolomide compromises HRQOL and global cognitive functioning to a lesser extent than does radiotherapy. METHODS: We did a prospective, phase 3, randomised controlled trial at 78 medical centres and large hospitals in 19 countries. We enrolled adult patients (aged ≥18 years) with histologically confirmed diffuse (WHO grade II) astrocytoma, oligodendroglioma, or mixed oligoastrocytoma, with a WHO performance status of 2 or lower, without previous chemotherapy or radiotherapy, who needed active treatment other than surgery. We randomly assigned eligible patients (1:1) using a minimisation technique, stratified by WHO performance status (0-1 vs 2), age (<40 years vs ≥40 years), presence of contrast enhancement on MRI, chromosome 1p status (deleted vs non-deleted vs indeterminate), and the treating medical centre, to receive either radiotherapy (50·4 Gy in 28 fractions of 1·8 Gy for 5 days per week up to 6·5 weeks) or temozolomide chemotherapy (75 mg/m2 daily, for 21 of 28 days [one cycle] for 12 cycles). The primary endpoint was progression-free survival (results published separately); here, we report the results for two key secondary endpoints: HRQOL (assessed using the European Organisation for Research and Treatment of Cancer's [EORTC] QLQ-C30 [version 3] and the EORTC Brain Cancer Module [QLQ-BN20]) and global cognitive functioning (assessed using the Mini-Mental State Examination [MMSE]). We did analyses on the intention-to-treat population. This study is closed and is registered at EudraCT, number 2004-002714-11, and at ClinicalTrials.gov, number NCT00182819. FINDINGS: Between Dec 6, 2005, and Dec 21, 2012, we randomly assigned 477 eligible patients to either radiotherapy (n=240) or temozolomide chemotherapy (n=237). The difference in HRQOL between the two treatment groups was not significant during the 36 months' follow-up (mean between group difference [averaged over all timepoints] 0·06, 95% CI -4·64 to 4·75, p=0·98). At baseline, 32 (13%) of 239 patients who received radiotherapy and 32 (14%) of 236 patients who received temozolomide chemotherapy had impaired cognitive function, according to the MMSE scores. After randomisation, five (8%) of 63 patients who received radiotherapy and three (6%) of 54 patients who received temozolomide chemotherapy and who could be followed up for 36 months had impaired cognitive function, according to the MMSE scores. No significant difference was recorded between the groups for the change in MMSE scores during the 36 months of follow-up. INTERPRETATION: The effect of temozolomide chemotherapy or radiotherapy on HRQOL or global cognitive functioning did not differ in patients with low-grade glioma. These results do not support the choice of temozolomide alone over radiotherapy alone in patients with high-risk low-grade glioma. FUNDING: Merck Sharp & Dohme-Merck & Co, National Cancer Institute, Swiss Cancer League, National Institute for Health Research, Cancer Research UK, Canadian Cancer Society Research Institute, National Health and Medical Research Council, European Organisation for Research and Treatment of Cancer Cancer Research Fund.
Asunto(s)
Neoplasias Encefálicas/psicología , Glioma/psicología , Calidad de Vida , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/radioterapia , Dacarbazina/análogos & derivados , Dacarbazina/uso terapéutico , Glioma/tratamiento farmacológico , Glioma/mortalidad , Glioma/radioterapia , Humanos , Clasificación del Tumor , Estudios Prospectivos , TemozolomidaRESUMEN
BACKGROUND: Treatment options for recurrent glioblastoma are scarce, with second-line chemotherapy showing only modest activity against the tumour. Despite the absence of well controlled trials, bevacizumab is widely used in the treatment of recurrent glioblastoma. Nonetheless, whether the high response rates reported after treatment with this drug translate into an overall survival benefit remains unclear. We report the results of the first randomised controlled phase 2 trial of bevacizumab in recurrent glioblastoma. METHODS: The BELOB trial was an open-label, three-group, multicentre phase 2 study undertaken in 14 hospitals in the Netherlands. Adult patients (≥18 years of age) with a first recurrence of a glioblastoma after temozolomide chemoradiotherapy were randomly allocated by a web-based program to treatment with oral lomustine 110 mg/m(2) once every 6 weeks, intravenous bevacizumab 10 mg/kg once every 2 weeks, or combination treatment with lomustine 110 mg/m(2) every 6 weeks and bevacizumab 10 mg/kg every 2 weeks. Randomisation of patients was stratified with a minimisation procedure, in which the stratification factors were centre, Eastern Cooperative Oncology Group performance status, and age. The primary outcome was overall survival at 9 months, analysed by intention to treat. A safety analysis was planned after the first ten patients completed two cycles of 6 weeks in the combination treatment group. This trial is registered with the Nederlands Trial Register (www.trialregister.nl, number NTR1929). FINDINGS: Between Dec 11, 2009, and Nov 10, 2011, 153 patients were enrolled. The preplanned safety analysis was done after eight patients had been treated, because of haematological adverse events (three patients had grade 3 thrombocytopenia and two had grade 4 thrombocytopenia) which reduced bevacizumab dose intensity; the lomustine dose in the combination treatment group was thereafter reduced to 90 mg/m(2). Thus, in addition to the eight patients who were randomly assigned to receive bevacizumab plus lomustine 110 mg/m(2), 51 patients were assigned to receive bevacizumab alone, 47 to receive lomustine alone, and 47 to receive bevacizumab plus lomustine 90 mg/m(2). Of these patients, 50 in the bevacizumab alone group, 46 in the lomustine alone group, and 44 in the bevacizumab and lomustine 90 mg/m(2) group were eligible for analyses. 9-month overall survival was 43% (95% CI 29-57) in the lomustine group, 38% (25-51) in the bevacizumab group, 59% (43-72) in the bevacizumab and lomustine 90 mg/m(2) group, 87% (39-98) in the bevacizumab and lomustine 110 mg/m(2) group, and 63% (49-75) for the combined bevacizumab and lomustine groups. After the reduction in lomustine dose in the combination group, the combined treatment was well tolerated. The most frequent grade 3 or worse toxicities were hypertension (13 [26%] of 50 patients in the bevacizumab group, three [7%] of 46 in the lomustine group, and 11 [25%] of 44 in the bevacizumab and lomustine 90 mg/m(2) group), fatigue (two [4%], four [9%], and eight [18%]), and infections (three [6%], two [4%], and five [11%]). At the time of this analysis, 144/148 (97%) of patients had died and three (2%) were still on treatment. INTERPRETATION: The combination of bevacizumab and lomustine met prespecified criteria for assessment of this treatment in further phase 3 studies. However, the results in the bevacizumab alone group do not justify further studies of this treatment. FUNDING: Roche Nederland and KWF Kankerbestrijding.
Asunto(s)
Anticuerpos Monoclonales Humanizados/administración & dosificación , Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Lomustina/administración & dosificación , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/mortalidad , Administración Oral , Adolescente , Adulto , Anticuerpos Monoclonales Humanizados/efectos adversos , Bevacizumab , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Supervivencia sin Enfermedad , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Combinación de Medicamentos , Quimioterapia Combinada , Femenino , Estudios de Seguimiento , Glioblastoma/mortalidad , Glioblastoma/patología , Humanos , Infusiones Intravenosas , Lomustina/efectos adversos , Masculino , Dosis Máxima Tolerada , Persona de Mediana Edad , Invasividad Neoplásica/patología , Recurrencia Local de Neoplasia/patología , Estadificación de Neoplasias , Análisis de Supervivencia , Adulto JovenRESUMEN
Overall survival of patients with anaplastic oligodendroglial tumors has been improved due to the addition of procarbazine, lomustine and vincristine (PCV) chemotherapy to radiotherapy (RT), especially in 1p/19q-codeleted tumors. With improved survival, quality of survival becomes pivotal. We evaluated cognitive functioning and health-related quality of life (HRQOL) in a cohort of long-term anaplastic oligodendroglioma survivors. Thirty-two out of 37 long-term survivors included in European Organisation for Research and Treatment of Cancer (EORTC) study 26951 in the Netherlands and France participated. Cognition was assessed using neuropsychological tests for 6 domains, and HRQOL with the EORTC Quality of Life Questionnaire (EORTC QLQ-C30) and Brain Cancer Module (EORTC QLQ-BN20). Fatigue and mood were evaluated. Results were compared to healthy controls and to patients' own HRQOL 2.5 years following initial treatment. At the time of assessment, median survival for the patients was 147 months, 27 were still progression-free since initial treatment. Of progression-free patients, 26% were not, and 30% were severely cognitively impaired; 41% were employed and 81% could live independently. Patients' HRQOL was worse compared to controls, but similar to 2.5 years after initial treatment. Initial treatment (RT versus RT + PCV) was not correlated with cognition or HRQOL. In conclusion, cognitive functioning in long-term anaplastic oligodendroglioma survivors is variable. However, most patients function independently. In progression-free patients, HRQOL is relatively stable during the disease course. In this small sample, no effect of the addition of PCV on cognition or HRQOL was identified.
Asunto(s)
Astrocitoma/complicaciones , Astrocitoma/psicología , Neoplasias Encefálicas/complicaciones , Neoplasias Encefálicas/psicología , Trastornos del Conocimiento/etiología , Calidad de Vida , Anciano , Astrocitoma/terapia , Neoplasias Encefálicas/terapia , Estudios de Cohortes , Metilasas de Modificación del ADN , Enzimas Reparadoras del ADN , Dacarbazina/análogos & derivados , Dacarbazina/uso terapéutico , Femenino , Estado de Salud , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Radioterapia , Estadísticas no Paramétricas , Sobrevivientes/psicología , Temozolomida , Proteínas Supresoras de TumorRESUMEN
BACKGROUND: Patients with low-grade gliomas (LGG) treated with surgery, generally function well and have a favorable prognosis. However, LGG can affect neurocognitive functioning. To date, little is known about social cognition (SC) in these patients, although impaired SC is related to social-behavioral problems and poor societal participation. Frontal brain areas are important for SC and LGG frequently have a frontal location. Therefore, the aim of the present study was to investigate whether emotion recognition, a key component of SC, was impaired, and related to general cognition, tumor location, laterality, tumor volume, and histopathological characteristics in patients with LGG, postsurgery, and before start of adjuvant therapy. METHODS: A total of 121 patients with LGG were matched with 169 healthy controls (HC). Tumor location [including (frontal) subregions; insula, anterior cingulate cortex, lateral prefrontal cortex (LPFC), orbitofrontal-ventromedial PFC] and tumor volume were determined on MRI scans. Emotion recognition was measured with the Ekman 60 faces test of the Facial Expressions of Emotion-Stimuli and Tests (FEEST). RESULTS: Patients with LGG performed significantly lower on the FEEST than HC, with 33.1% showing impairment compared to norm data. Emotion recognition was not significantly correlated to frontal tumor location, laterality, and histopathological characteristics, and significantly but weakly with general cognition and tumor volume. CONCLUSIONS: Emotion recognition is impaired in patients with LGG but not (strongly) related to specific tumor characteristics or general cognition. Hence, measuring SC with individual neuropsychological assessment of these patients is crucial, irrespective of tumor characteristics, to inform clinicians about possible impairments, and consequently offer appropriate care.
Asunto(s)
Disfunción Cognitiva , Glioma , Humanos , Emociones , Cognición , Reconocimiento en Psicología , Pruebas Neuropsicológicas , Expresión FacialRESUMEN
Previously, the tyrosine kinase inhibitor sunitinib failed to show clinical benefit in patients with recurrent glioblastoma. Low intratumoural sunitinib accumulation in glioblastoma patients was reported as a possible explanation for the lack of therapeutic benefit. We designed a randomized phase II/III trial to evaluate whether a high-dose intermittent sunitinib schedule, aimed to increase intratumoural drug concentrations, would result in improved clinical benefit compared to standard treatment with lomustine. Patients with recurrent glioblastoma were randomized 1:1 to high-dose intermittent sunitinib 300 mg once weekly (Q1W, part 1) or 700 mg once every two weeks (Q2W, part 2) or lomustine. The primary end-point was progression-free survival. Based on the pre-planned interim analysis, the trial was terminated for futility after including 26 and 29 patients in parts 1 and 2. Median progression-free survival of sunitinib 300 mg Q1W was 1.5 months (95% CI 1.4-1.7) compared to 1.5 months (95% CI 1.4-1.6) in the lomustine arm (P = 0.59). Median progression-free survival of sunitinib 700 mg Q2W was 1.4 months (95% CI 1.2-1.6) versus 1.6 months (95% CI 1.3-1.8) for lomustine (P = 0.70). Adverse events (≥grade 3) were observed in 25%, 21% and 31% of patients treated with sunitinib 300 mg Q1W, sunitinib 700 mg Q2W and lomustine, respectively (P = 0.92). To conclude, high-dose intermittent sunitinib treatment failed to improve the outcome of patients with recurrent glioblastoma when compared to standard lomustine therapy. Since lomustine remains a poor standard treatment strategy for glioblastoma, innovative treatment strategies are urgently needed.
RESUMEN
(11)C-methionine (MET) is the most popular amino acid tracer used in PET imaging of brain tumours. Because of its characteristics, MET PET provides a high detection rate of brain tumours and good lesion delineation. This review focuses on the role of MET PET in imaging cerebral gliomas. The Introduction provides a clinical overview of what is important in primary brain tumours, recurrent brain tumours and brain metastases. The indications for radiotherapy and the results and problems arising after chemoradiotherapy in relation to imaging (pseudoprogression or radionecrosis) are discussed. The working mechanism, scan interpretation and quantification possibilities of MET PET are then explained. A literature overview is given of the role of MET PET in primary gliomas (diagnostic accuracy, grading, prognosis, assessment of tumour extent, biopsy and radiotherapy planning), in brain metastases, and in the differentiation between tumour recurrence and radiation necrosis. Finally, MET PET is compared to other nuclear imaging possibilities in brain tumour imaging.
Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Glioma/diagnóstico por imagen , Metionina , Tomografía de Emisión de Positrones , Radiofármacos , Neoplasias Encefálicas/patología , Glioma/secundario , Humanos , PronósticoRESUMEN
BACKGROUND: Radiotherapy (RT) and chemotherapy are components of standard multi-modality treatment of high grade gliomas (HGG) aimed at achieving local tumor control. Treatment is neurotoxic and RT plays an important role in this, inducing damage even distant to the RT target volume. PURPOSE: This retrospective longitudinal study evaluated the effect of treatment on white matter and gray matter volume in the tumor-free hemisphere of HGG patients using voxel based morphometry (VBM). METHOD: 3D T1-weighted MR images of 12 HGG patients at multiple timepoints during standard treatment were analyzed using VBM. Segmentation of white matter and gray matter of the tumor-free hemisphere was performed. Multiple general linear models were used to asses white matter and gray matter volumetric differences between time points. A mean RT dose map was created and compared to the VBM results. RESULTS: Diffuse loss of white matter volume, mainly throughout the frontal and parietal lobe, was found, grossly overlapping regions that received the highest RT dose. Significant loss of white matter was first noticed after three cycles of chemotherapy and persisted after the completion of standard treatment. No significant loss of white matter volume was observed between pre-RT and the first post-RT follow-up timepoint, indicating a delayed effect. CONCLUSION: This study demonstrated diffuse and early-delayed decreases in white matter volume of the tumor-free hemisphere in HGG patients after standard treatment. White matter volume changes occurred mainly throughout the frontal and parietal lobe and grossly overlapped with areas that received the highest RT dose.
Asunto(s)
Glioma , Sustancia Blanca , Humanos , Estudios Longitudinales , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Glioma/diagnóstico por imagen , Glioma/radioterapia , Encéfalo/diagnóstico por imagen , Encéfalo/patologíaRESUMEN
MRI is the gold standard for treatment response assessments for glioblastoma. However, there is no consensus regarding the optimal interval for MRI follow-up during standard treatment. Moreover, a reliable assessment of treatment response is hindered by the occurrence of pseudoprogression. It is unknown if a radiological follow-up strategy at 2-3 month intervals actually benefits patients and how it influences clinical decision making about the continuation or discontinuation of treatment. This study assessed the consequences of scheduled follow-up scans post-chemoradiotherapy (post-CCRT), after three cycles of adjuvant chemotherapy [TMZ3/6], and after the completion of treatment [TMZ6/6]), and of unscheduled scans on treatment decisions during standard concomitant and adjuvant treatment in glioblastoma patients. Additionally, we evaluated how often follow-up scans resulted in diagnostic uncertainty (tumor progression versus pseudoprogression), and whether perfusion MRI improved clinical decision making. Scheduled follow-up scans during standard treatment in glioblastoma patients rarely resulted in an early termination of treatment (2.3% post-CCRT, 3.2% TMZ3/6, and 7.8% TMZ6/6), but introduced diagnostic uncertainty in 27.7% of cases. Unscheduled scans resulted in more major treatment consequences (30%; p < 0.001). Perfusion MRI caused less diagnostic uncertainty (p = 0.021) but did not influence treatment consequences (p = 0.871). This study does not support the current pragmatic follow-up strategy and suggests a more tailored follow-up approach.
RESUMEN
Isocitrate dehydrogenase (IDH) mutation status is an important biomarker in the glioma-defining subtype and corresponding prognosis. This study proposes a straightforward method for 2-hydroxyglutarate (2-HG) quantification by MR spectroscopy for IDH mutation status detection and directly compares in vivo 2-HG MR spectroscopy with ex vivo 2-HG concentration measured in resected tumor tissue. Eleven patients with suspected lower-grade glioma (ten IDH1; one IDHwt) were prospectively included. Preoperatively, 3T point-resolved spectroscopy (PRESS) was acquired; 2-HG was measured as the percentage elevation of Glx3 (the sum of 2-HG and Glx) compared to Glx4. IDH mutation status was assessed by immunochemistry or direct sequencing. The ex vivo 2-HG concentration was determined in surgically obtained tissue specimens using gas chromatography-mass spectrometry. Pearson correlation was used for assessing the correlation between in vivo MR spectroscopy and ex vivo 2-HG concentration. MR spectroscopy was positive for 2-HG in eight patients, all of whom had IDH1 tumors. A strong correlation (r = 0.80, p = 0.003) between 2-HG MR spectroscopy and the ex vivo 2-HG concentration was found. This study shows in vivo 2-HG MR spectroscopy can non-invasively determine IDH status in glioma and demonstrates a strong correlation with ex vivo 2-HG concentration in patients with lower-grade glioma.
RESUMEN
Aim: To investigate the clinical relevance of the radiotherapy (RT) dose bath in patients treated for lower grade glioma (LGG). Methods: Patients (n = 17) treated with RT for LGG were assessed with neurocognitive function (NCF) tests and structural Magnetic Resonance Imaging (MRI) and categorized in subgroups based on tumour lateralisation. RT dose, volumetric results and cerebral microbleed (CMB) number were extracted for contralateral cerebrum, contralateral hippocampus, and cerebellum. The RT clinical target volume (CTV) was included in the analysis as a surrogate for focal tumour and other treatment effects. The relationships between RT dose, CTV, NCF and radiological outcome were analysed per subgroup. Results: The subgroup with left-sided tumours (n = 10) performed significantly lower on verbal tests. The RT dose to the right cerebrum, as well as CTV, were related to poorer performance on tests for processing speed, attention, and visuospatial abilities, and more CMB.In the subgroup with right-sided tumours (n = 7), RT dose in the left cerebrum was related to lower verbal memory performance, (immediate and delayed recall, r = -0.821, p = 0.023 and r = -0.937, p = 0.002, respectively), and RT dose to the left hippocampus was related to hippocampal volume (r = -0.857, p = 0.014), without correlation between CTV and NCF. Conclusion: By using a novel approach, we were able to investigate the clinical relevance of the RT dose bath in patients with LGG more specifically. We used combined MRI-derived and NCF outcome measures to assess radiation-induced brain damage, and observed potential RT effects on the left-sided brain resulting in lower verbal memory performance and hippocampus volume.
RESUMEN
OBJECTIVES: Radiation-induced changes (RIC) secondary to focal radiotherapy can imitate tumour progression in brain metastases and make follow-up clinical decision making unreliable. 11C-methyl-L-methionine-PET (MET-PET) is widely used for the diagnosis of RIC in brain metastases, but minimal literature exists regarding the optimum PET measuring parameter to be used. We analysed the diagnostic performance of different MET-PET measuring parameters in distinguishing between RIC and tumour progression in a retrospective cohort of brain metastasis patients. METHODS: 26 patients with 31 metastatic lesions were included on the basis of having undergone a PET scan due to radiological uncertainty of disease progression. The PET images were analysed and methionine uptake quantified using standardised-uptake-values (SUV) and tumour-to-normal tissue (T/N) ratios, generated as SUVmean, SUVmax, SUVpeak, T/Nmean, T/Nmax-mean and T/Npeak-mean. Metabolic-tumour-volume and total-lesion methionine metabolism were also computed. A definitive diagnosis of either RIC or tumour progression was established by clinicoradiological follow-up of least 4 months subsequent to the investigative PET scan. RESULTS: All MET-PET parameters except metabolic-tumour-volume showed statistically significant differences between tumour progression and lesions with RIC. Receiver-operating-characteristic curve and area-under the-curve analysis demonstrated the highest value of 0.834 for SUVmax with a corresponding optimum threshold of 3.29. This associated with sensitivity, specificity, positive predictive and negative predictive values of 78.57, 70.59%, 74.32 and 75.25% respectively. CONCLUSIONS: MET-PET is a useful modality for the diagnosis of RIC in brain metastases. SUVmax was the PET parameter with the greatest diagnostic performance. ADVANCES IN KNOWLEDGE: More robust comparisons between SUVmax and SUVpeak could enhance follow-up treatment planning.