Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Aquat Toxicol ; 272: 106972, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38815346

RESUMEN

Aquatic ecosystems and their communities are exposed to numerous stressors of various natures (chemical and physical), whose impacts are often poorly documented. In urban areas, the use of biocides such as dodecyldimethylbenzylammonium chloride (DDBAC) and their subsequent release in wastewater result in their transfer to urban aquatic ecosystems. DDBAC is known to be toxic to most aquatic organisms. Artificial light at night (ALAN) is another stressor that is increasing globally, especially in urban areas. ALAN may have a negative impact on photosynthetic cycles of periphytic biofilms, which in turn may result in changes in their metabolic functioning. Moreover, studies suggest that exposure to artificial light could increase the biocidal effect of DDBAC on biofilms. The present study investigates the individual and combined effects of DDBAC and/or ALAN on the functioning and structure of photosynthetic biofilms. We exposed biofilms in artificial channels to a nominal concentration of 30 mg.L-1 of DDBAC and/or ALAN for 10 days. ALAN modified DDBAC exposure, decreasing concentrations in the water but not accumulation in biofilms. DDBAC had negative impacts on biofilm functioning and structure. Photosynthetic activity was inhibited by > 90% after 2 days of exposure, compared to the controls, and did not recover over the duration of the experiment. Biofilm composition was also impacted, with a marked decrease in green algae and the disappearance of microfauna under DDBAC exposure. The integrity of algal cells was compromised where DDBAC exposure altered the chloroplasts and chlorophyll content. Impacts on autotrophs were also observed through a shift in lipid profiles, in particular a strong decrease in glycolipid content was noted. We found no significant interactive effect of ALAN and DDBAC on the studied endpoints.


Asunto(s)
Biopelículas , Agua Dulce , Contaminantes Químicos del Agua , Biopelículas/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Fotosíntesis/efectos de los fármacos , Compuestos de Benzalconio/toxicidad , Compuestos de Benzalconio/farmacología , Luz , Desinfectantes/toxicidad , Ciudades
2.
MethodsX ; 10: 102026, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36718203

RESUMEN

Hydrophilic interaction liquid chromatography (HILIC), coupled to tandem mass spectrometry, can be used to separate and determine various polar lipid classes. The development of an HILIC chromatographic separation of several molecular species among five phospholipid classes (PC, PE, PG, PI and PS) is reported here. In this method, a gradient with acetonitrile and 40 mM ammonium acetate buffer was employed. The initial composition was 95% of acetonitrile, then this proportion was decreased to 70% in order to elute all the compounds of interest for a total running time of 11 mins. Furthermore, mobile phase pH can affect the ionizable character of the compounds, according to their pKa values, and also the stationary phase charge state. The influence of such a parameter on both retention times and resolution was evaluated. Besides, the response of different kinds of internal standards (post-extraction standard addition) was evaluated in four different biological matrices, two microalgae extracts and two marine fish extracts. This study found that the recovery rates were between 70 and 140% of the expected value, with relative standard deviations between 10 and 35%, and then limited matrix effects.•HILIC approach can be used to separate phospholipid according to their polar head-group, and electrospray ionization in negative mode as well as MS/MS allows further identification of the molecular species within each phospholipid class.•Matrix effects are low and compensated with appropriate internal standards.•The limits of quantifications were ranging from 0.05 to 0.14 µg.mL-1, depending on the analyte.

3.
Environ Sci Technol ; 46(24): 13344-53, 2012 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-23176704

RESUMEN

Acidic herbicides are increasingly monitored in freshwater, since their high solubility favors their rapid transfer to the water phase. Therefore, contaminant levels in the water can vary rapidly and passive sampling would be preferred over spot sampling to integrate all pollution events over a given exposure time. In this work, we propose to compare the conventional pharmaceutical polar organic chemical integrative sampler (POCIS) with modified POCISs containing two different receiving phases: a standard polystyrene divinylbenzene polymer with a higher specific surface area (Chromabond HR-X) and a mixed-mode anion exchange sorbent providing additional strong anion exchange interaction sites (Oasis MAX). Due to its hydrophobic character, Chromabond HR-X had little interaction with water (no sampling of acidic herbicides); whereas Oasis MAX provided acceptable sampling parameters (longer kinetic regime together with higher sampling rates). Additional experiments with POCIS-MAX showed no influence of nitrates on analyte uptakes, and linear isotherms reaching 10 µg L⁻¹, supporting the applicability of this device for the sampling of organic acids in continental water. The performance and reference compound (PRC) approach would be then applicable for POCIS-MAX if no competition is observed with other anions, especially organic acids (e.g., humic acids).


Asunto(s)
Ácidos Carboxílicos/análisis , Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Resinas de Intercambio Iónico/química , Compuestos Orgánicos/análisis , Adsorción , Agua Potable/química , Nitratos/análisis , Estándares de Referencia , Ríos/química , Extracción en Fase Sólida , Temperatura
4.
Environ Pollut ; 315: 120223, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36191798

RESUMEN

Metals are naturally present in freshwater ecosystems but anthropogenic activities like mining operations represent a long-standing concern. Metals released into aquatic environments may affect microbial communities such as periphytic biofilm, which plays a key role as a primary producer in stream ecosystems. Using two 28-day microcosm studies involving two different photoperiods (light/dark cycle of 16/8 vs 8/16), the present study assessed the effects of four increasing nickel (Ni) concentrations (0-6 µM) on two natural biofilm communities collected at different seasons (summer and winter). The two communities were characterized by different structural profiles and showed significant differences in Ni accumulated content for each treatment. For instance, the biofilm metal content was four times higher in the case of summer biofilm at the highest Ni treatment and after 28 days of exposure. Biomarkers examined targeted both heterotrophic and autotrophic organisms. For heterotrophs, the ß-glucosidase and ß-glucosaminidase showed no marked effects of Ni exposure and were globally similar between the two communities suggesting low toxicity. However, the photosynthetic yield confirmed the toxicity of Ni on autotrophs with maximum inhibition of 81 ± 7% and 60 ± 1% respectively for the summer and winter biofilms. Furthermore, biofilms previously exposed to the highest long-term Ni concentration ([Ni2+] = 6 µM) revealed no acute effects in subsequent toxicity based on the PSII yield, suggesting a tolerance acquisition by the phototrophic community. Taken together, the results suggest that the biofilm response to Ni exposure was dependent of the function considered and that descriptors such as biofilm metal content could be seasonally dependent, information of great importance in a context of biomonitoring.


Asunto(s)
Níquel , Contaminantes Químicos del Agua , Biopelículas , Ecosistema , Níquel/toxicidad , Estaciones del Año , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
5.
Environ Sci Pollut Res Int ; 29(20): 29332-29347, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34731421

RESUMEN

Freshwater biofilms have been increasingly used during the last decade in ecotoxicology due to their ecological relevance to assess the effect(s) of environmental stress at the community level. Despite growing knowledge about the effect of various stressors on the structure and the function of these microbial communities, a strong research effort is still required to better understand their response to chemical stress and the influence of environmental stressors in this response. To tackle this challenge, untargeted metabolomics is an approach of choice because of its capacity to give an integrative picture of the exposure to multiple stress and associated effect as well as identifying the molecular pathways involved in these responses. In this context, the present study aimed to explore the use of an untargeted metabolomics approach to unravel at the molecular/biochemical level the response of the whole biofilm to chemical stress and the influence of various environmental factors in this response. To this end, archived high-resolution mass spectrometry data from previous experiments at our laboratory on the effect of the model photosynthesis inhibitor diuron on freshwater biofilm were investigated by using innovative solutions for OMICs data (e.g., DRomics) and more usual chemometric approaches (multivariate and univariate statistical analyses). The results showed a faster (1 min) and more sensitive response of the metabolome to diuron than usual functional descriptors, including photosynthesis. Also, the metabolomics response to diuron resulted from metabolites following various trends (increasing, decreasing, U/bell shape) along increasing concentration and time. This metabolomics response was influenced by the temperature, photoperiod, and flow. A focus on a plant-specific omega-3 (eicosapentaenoic acid) playing a key role in the trophic chain highlighted the potential relevance of metabolomics approach to establish the link between molecular alteration and ecosystem structure/functioning impairment but also how complex is the response and the influence of all the tested factors on this response at the metabolomics level. Altogether, our results underline that more fundamental researches are needed to decipher the metabolomics response of freshwater biofilm to chemical stress and its link with physiological, structural, and functional responses toward the unraveling of adverse outcome pathways (AOP) for key ecosystem functions (e.g., primary production).


Asunto(s)
Herbicidas , Microbiota , Contaminantes Químicos del Agua , Biopelículas , Diurona/metabolismo , Agua Dulce , Herbicidas/farmacología , Metabolómica , Contaminantes Químicos del Agua/metabolismo
6.
Plants (Basel) ; 10(7)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206402

RESUMEN

The presence of dense macrophyte canopies in shallow lakes locally generates thermal stratification and the buildup of labile organic matter, which in turn stimulate the biological oxygen demand. The occurrence of hypoxic conditions may, however, be buffered by strong wind episodes, which favor water mixing and reoxygenation. The present study aims at explicitly linking the wind action and water oxygenation within dense hydrophytes stands in shallow lakes. For this purpose, seasonal 24 h-cycle campaigns were carried out for dissolved gases and inorganic compounds measurements in vegetated stands of an oligo-mesotrophic shallow lake. Further, seasonal campaigns were carried out in a eutrophic shallow lake, at wind-sheltered and -exposed sites. Overall results showed that dissolved oxygen (DO) daily and seasonal patterns were greatly affected by the degree of wind exposure. The occurrence of frequent wind episodes favored the near-bottom water mixing, and likely facilitated mechanical oxygen supply from the atmosphere or from the pelagic zone, even during the maximum standing crop of plants (i.e., summer and autumn). A simple model linking wind exposure (Keddy Index) and water oxygenation allowed us to produce an output management map, which geographically identified wind-sheltered sites as the most subjected to critical periods of hypoxia.

7.
Sci Total Environ ; 652: 1242-1251, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30586810

RESUMEN

Biofilms are considered as good bioindicators of contamination by means of their capacity to react quickly to xenobiotics exposure, and their pivotal role in sustaining the aquatic trophic web. The exchanges of dissolved substances between water column and biofilm can be modulated by flow velocity. This study deals with toxicokinetic (transfer mechanisms) and toxicodynamic (effects) modelling of pesticides under two contrasted flow conditions. Diuron was used to run a 2-h kinetic study on mature biofilms in river channels. Two flow conditions were considered (⋘1 cm·s-1: lentic environments such as ponds, 2 cm·s-1: lotic environments such as watercourses). Three concentrations were tested in order to estimate contamination levels in biofilms: 0, 5 (environmentally relevant concentration) and 50 (to determine the concentration effect) µg·L-1. The effect of the above-mentioned factors was also assessed on biofilms photosynthesis inhibition. For successive sampling times between 0 and 2 h, the raw biofilms and EPS tightly bound to cells plus microorganisms (T-EPS-M), were physically separated and analysed for diuron accumulation and structural and functional microbial descriptors. Diuron amounts accumulated in biofilm increased with increasing diuron exposure. Biofilms accumulated higher amounts of diuron at the lower flow velocity compared to high flow for raw biofilms, while accumulation in the T-EPS-M fraction was similar between flow conditions. Consequently, both flow velocity and diuron exposure had an influence on diuron bioaccumulation and distribution. Photosynthesis inhibition over time was directly linked to the exposure concentration of diuron recorded in the T-EPS-M fraction. These results suggest that flow causes a loss of organic matter in biofilms, decreasing the total accumulation of diuron, especially within diffusible EPS. As pesticide distribution in biofilm is a major factor in the onset of toxicity, the novel fractioning method presented here will improve further toxicokinetic and toxicodynamic studies dealing with biofilms exposed to organic toxicants.


Asunto(s)
Biopelículas/efectos de los fármacos , Diurona/toxicidad , Agua Dulce , Movimientos del Agua , Contaminantes Químicos del Agua/toxicidad , Biopelículas/crecimiento & desarrollo , Diurona/metabolismo , Agua Dulce/química , Agua Dulce/microbiología , Toxicocinética , Contaminantes Químicos del Agua/metabolismo
8.
Sci Total Environ ; 688: 960-969, 2019 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-31726578

RESUMEN

Fatty acids (FA) are crucial for the maintenance of membrane fluidity and play a central role in metabolic energy storage. Polyunsaturated fatty acids play an essential ecological role since they are key parameters in the nutritional value of algae. Pesticide impacts on fatty acid profiles have been documented in marine microalgae, but remain understudied in freshwater diatoms. The aims of this study were to: 1) investigate the impact of diuron and S-metolachlor on "classical descriptors" (photosynthesis, growth rate, pigment contents, and on the expression levels of target genes in freshwater diatoms), 2) examine the impact of these pesticides on diatom fatty acid profiles and finally, 3) compare fatty acid profiles and "classical descriptor" responses in order to evaluate their complementarity and ecological role. To address this issue, the model freshwater diatom Gomphonema gracile was exposed during seven days to diuron and S-metolachlor at 10 µg.L-1. G. gracile was mostly composed of the following fatty acids: 20:5n3; 16:1; 16:0; 16:3n4; 14:0 and 20:4n6 and highly unsaturated fatty acids were overall the best represented fatty acid class. S-metolachlor decreased the growth rate and chlorophyll a content of G. gracile and induced the expression of cox1, nad5, d1 and cat genes, while no significant impacts were observed on photosynthesis and carotenoid content. In a more global way, S-metolachlor did not impact the fatty acid profiles of G. gracile. Diuron inhibited photosynthesis, growth rate, chlorophyll a content and induced cat and d1 gene expressions but no significant effect was observed on carotenoid content. Diuron decreased the percentage of highly unsaturated fatty acids but increased the percentage of monounsaturated fatty acids. These results demonstrated that fatty acids responded to diuron conversely to pigment content, suggesting that fatty acids can inform on energy content variation in diatoms subjected to herbicide stress.


Asunto(s)
Acetamidas/toxicidad , Diatomeas/fisiología , Diurona/toxicidad , Herbicidas/toxicidad , Ácidos Grasos , Pruebas de Toxicidad , Contaminantes Químicos del Agua/toxicidad
9.
Aquat Toxicol ; 198: 103-117, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29529466

RESUMEN

Microalgae, which are the foundation of aquatic food webs, may be the indirect target of herbicides used for agricultural and urban applications. Microalgae also interact with other compounds from their environment, such as natural dissolved organic matter (DOM), which can itself interact with herbicides. This study aimed to evaluate the influence of natural DOM on the toxicity of three herbicides (diuron, irgarol and S-metolachlor), singly and in ternary mixtures, to two marine microalgae, Chaetoceros calcitrans and Tetraselmis suecica, in monospecific, non-axenic cultures. Effects on growth, photosynthetic efficiency (Ф'M) and relative lipid content were evaluated. The chemical environment (herbicide and nutrient concentrations, dissolved organic carbon and DOM optical properties) was also monitored to assess any changes during the experiments. The results show that, without DOM, the highest irgarol concentration (I0.5: 0.5 mg.L-1) and the strongest mixture (M2: irgarol 0.5 µg.L-1 + diuron 0.5 µg.L-1 + S-metolachlor 5.0 µg.L-1) significantly decreased all parameters for both species. Similar impacts were induced by I0.5 and M2 in C. calcitrans (around -56% for growth, -50% for relative lipid content and -28% for Ф'M), but a significantly higher toxicity of M2 was observed in T. suecica (-56% and -62% with I0.5 and M2 for growth, respectively), suggesting a possible interaction between molecules. With DOM added to the culture media, a significant inhibition of these three parameters was also observed with I0.5 and M2 for both species. Furthermore, DOM modulated herbicide toxicity, which was decreased for C. calcitrans (-51% growth at I0.5 and M2) and increased for T. suecica (-64% and -75% growth at I0.5 and M2, respectively). In addition to the direct and/or indirect (via their associated bacteria) use of molecules present in natural DOM, the characterization of the chemical environment showed that the toxic effects observed on microalgae were accompanied by modifications of DOM composition and the quantity of dissolved organic carbon excreted and/or secreted by microorganisms. This toxicity modulation in presence of DOM could be explained by (i) the modification of herbicide bioavailability, (ii) a difference in cell wall composition between the two species, and/or (iii) a higher detoxification capacity of C. calcitrans by the use of molecules contained in DOM. This study therefore demonstrated, for the first time, the major modulating role of natural DOM on the toxicity of herbicides to marine microalgae.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Herbicidas/toxicidad , Microalgas/efectos de los fármacos , Compuestos Orgánicos/farmacología , Pruebas de Toxicidad , Acetamidas/toxicidad , Chlorophyta/efectos de los fármacos , Diatomeas/efectos de los fármacos , Diurona/toxicidad , Nitratos/análisis , Nitrógeno/análisis , Fosfatos/análisis , Fósforo/análisis , Análisis de Componente Principal , Solubilidad , Especificidad de la Especie , Contaminantes Químicos del Agua/toxicidad
10.
Environ Sci Pollut Res Int ; 22(6): 4009-24, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25077658

RESUMEN

Comparative effects of long-term exposure to Polar Organic Chemical Integrative Sampler (POCIS) extracts (PE) and to a reconstituted mixture based on the major compounds quantified in the PE were evaluated on river biofilm communities. The study aimed to characterize the effects of long-term and low-dose exposure to pesticides on natural biofilm communities and to evaluate if the effects due to PE exposure could be explained solely by the major compounds identified in the extracts. Biofilms from an uncontaminated site were exposed in artificial channels to realistic environmental concentrations using diluted PE, with the 12 major compounds quantified in the extracts (Mix) or with water not containing pesticides (Ctr). Significant differences between biofilms exposed to pesticides or not were observed with regard to diatom density, biomass (dry weight and ash-free dry mass), photosynthetic efficiency (ΦpsII) and antioxidant enzyme activities. After 14 days of exposure to the different treatments, the observed trend towards a decrease of mean diatom cell biovolumes in samples exposed to pesticides was related to the control biofilms' higher relative abundance of large species like Cocconeis placentula or Amphora copulata and lower relative abundance of small species like Eolimna minima compared to the contaminated ones. Principal component analyses clearly separated contaminated (PE and Mix) from non-contaminated (Ctr) biofilms; on the contrary, the analyses did not reveal separation between biofilms exposed to PE or to the 12 major compounds identified in the extract.


Asunto(s)
Biopelículas/efectos de los fármacos , Diatomeas/efectos de los fármacos , Monitoreo del Ambiente/estadística & datos numéricos , Plaguicidas/toxicidad , Ríos/química , Contaminantes Químicos del Agua/toxicidad , Análisis de Varianza , Biomasa , Diatomeas/crecimiento & desarrollo , Monitoreo del Ambiente/métodos , Fluorescencia , Francia , Plaguicidas/análisis , Densidad de Población , Análisis de Componente Principal , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA