Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Materials (Basel) ; 15(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36013696

RESUMEN

Significant advances in the field of composite structures continue to be made on a variety of fronts, including theoretical studies based on advances in structural theory kinematics and computer models of structural elements employing advanced theories and unique formulations. Plate vibration is a persistently interesting subject owing to its wider usage as a structural component in the industry. The current study was carried out using the Co continuous eight-noded quadrilateral shear-flexible element having five nodal degrees of freedom, which is ground on first-order shear deformation theory (FSDT). For small strain and sufficiently large deformation, the geometric nonlinearity is integrated using the Von Kármán assumption. The governing equations in the time domain are solved employing the modified shooting technique along with an arc-length and pseudo-arc-length continuation strategy. This work explored the effect of fiber angle on the steady-state nonlinear forced vibration response. To explain hardening nonlinearity, the strain and stress fluctuation throughout the thickness for a rectangular laminated composite plate is determined. The cyclic fluctuation of the steady-state nonlinear normal stress during a time period at the centre of the top/bottom surfaces is also provided at the forcing frequency ratio of peak amplitude in a nonlinear response. Because of the variation in restoring forces, the frequency spectra for all fiber angle orientations show significantly enhanced harmonic participation in addition to the fundamental harmonic.

2.
Materials (Basel) ; 15(7)2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35407987

RESUMEN

In this study, compacted hematite (Fe2O3) preforms were made and sintered at various temperatures, such as 1250 °C and 1300 °C, using both conventional and microwave sintering methods. The density, porosity, microhardness, cold crushing strength, microphotographs, and X-ray diffraction (XRD) analysis of the sintered preforms were used to evaluate the performance of the two sintering methods. It was found that microwave sintered preforms possessed lesser porosity and higher density than conventionally sintered preforms owing to uniform heating of the powdered ore in microwave sintering method. Furthermore, it was also observed that microwave sintered preforms exhibited relatively higher cold crushing strength and hardness than conventionally sintered preforms. Thus, the overall results revealed that microwave sintering yielded better properties considered in the present study.

3.
Materials (Basel) ; 15(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36431537

RESUMEN

The present study investigates the CNC milling performance of the machining of AISI 316 stainless steel using a carbide cutting tool insert. Three critical machining parameters, namely cutting speed (v), feed rate (f) and depth of cut (d), each at three levels, are chosen as input machining parameters. The face-centred central composite design (FCCCD) of the experiment is based on response surface methodology (RSM), and machining performances are measured in terms of material removal rate (MRR) and surface roughness (SR). Analysis of variance, response graphs, and three-dimensional surface plots are used to analyse experimental results. Multi-response optimization using the data envelopment analysis based ranking (DEAR) approach is used to find the ideal configuration of the machining parameters for milling AISI 316 SS. The variables v = 220 m/min, f = 0.20 mm/rev and d = 1.2 mm were obtained as the optimal machine parameter setting. Study reveals that MRR is affected dominantly by d followed by v. For SR, f is the dominating factor followed by d. SR is found to be almost unaffected by v. Finally, it is important to state that this work made an attempt to successfully machine AISI 316 SS with a carbide cutting tool insert, to investigate the effect of important machining parameters on MRR and SR and also to optimize the multiple output response using DEAR method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA