Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 89, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38254050

RESUMEN

Several indigenous cattle breeds in Sweden are endangered. Conservation of their genetic diversity and genomic characterization is a priority.Whole-genome sequences (WGS) with a mean coverage of 25X, ranging from 14 to 41X were obtained for 30 individuals of the breeds Fjällko, Fjällnära, Bohuskulla, Rödkulla, Ringamåla, and Väneko. WGS-based genotyping revealed 22,548,028 variants in total, comprising 18,876,115 single nucleotide polymorphisms (SNPs) and 3,671,913 indels. Out of these, 1,154,779 SNPs and 304,467 indels were novel. Population stratification based on roughly 19 million SNPs showed two major groups of the breeds that correspond to northern and southern breeds. Overall, a higher genetic diversity was observed in the southern breeds compared to the northern breeds. While the population stratification was consistent with previous genome-wide SNP array-based analyses, the genealogy of the individuals inferred from WGS based estimates turned out to be more complex than expected from previous SNP-array based estimates. Polymorphisms and their predicted phenotypic consequences were associated with differences in the coat color phenotypes between the northern and southern breeds. Notably, these high-consequence polymorphisms were not represented in SNP arrays, which are used routinely for genotyping of cattle breeds.This study is the first WGS-based population genetic analysis of Swedish native cattle breeds. The genetic diversity of native breeds was found to be high. High-consequence polymorphisms were linked with desirable phenotypes using whole-genome genotyping, which highlights the pressing need for intensifying WGS-based characterization of the native breeds.


Asunto(s)
Cruzamiento , Polimorfismo de Nucleótido Simple , Humanos , Animales , Bovinos/genética , Suecia , Secuenciación Completa del Genoma/veterinaria , Genómica
2.
J Anim Breed Genet ; 141(2): 220-234, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38009381

RESUMEN

Speed, in the form of racing time per kilometre (km), is a performance trait of the Swedish-Norwegian Coldblooded trotter included in the joint Swedish-Norwegian genetic evaluation. A few popular stallions have dominated Coldblooded trotter breeding, which has led to an increasing average relationship between individuals in the population. This study investigated the scope for broadening the breeding goal by selecting for racing time per km over different race lengths (short: 1640 m, medium: 2140 m and long: 2640 m), as this could encourage the use of breeding sires that are less related to the population. Performance data on three- to 12-year-old Coldblooded trotters in all Swedish races run 1995-2021 were obtained from the Swedish Trotting Association. These data consisted of 46,356 observations for 8375 horses in short-distance races, 430,512 observations for 11,193 horses in medium-distance races and 11,006 observations for 3341 horses in long-distance races. Variance components and genetic correlations were calculated using a trivariate animal model with Gibbs sampling from the BLUPF90 suite of programs. Breeding values for the three traits were then estimated using univariate animal models with the same fixed and random effects as in the trivariate model. Heritability estimates of 0.27-0.28 and genetic correlations between racing time per km at the different distances of 0.97-0.99 were obtained. Despite the strong genetic correlation between the traits, there was some re-ranking among the top 10 and top 30 stallions based on distance-specific breeding values. Estimated rank correlation between breeding values for racing time per km in short- and medium-distance races was 0.86, while between short- and long-distance races and between medium- and long-distance races it was 0.61. Mean relationship within the top 10 and top 30 stallions based on breeding values for racing time per km at each distance was 0.31-0.33 and 0.23-0.24 while mean relationship to the rest of the population ranged from 0.17 to 0.18 for all groups, although the 10 and 30 top-ranking stallions differed somewhat in the traits. Estimated average increase in inbreeding was 0.1% per year of birth and 1.2% per generation. The strong genetic correlation between racing time per km at different distances did not support their use as genetically distinct traits. Re-ranking of stallions for racing time per km at different race lengths could favour the use of a larger number of stallions in breeding, but according to our results it would not promote the use of stallions that are less related to the total population. Other traits like longevity or health traits, for example, career length and orthopaedic status, may be more relevant in broadening the breeding goal and preventing a few sires dominating future breeding, and this would be interesting to study further.


Asunto(s)
Cruzamiento , Caballos , Animales , Masculino , Caballos/genética , Endogamia , Noruega , Fenotipo , Suecia
3.
Genet Sel Evol ; 55(1): 89, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38082412

RESUMEN

BACKGROUND: In domesticated animals, many important traits are complex and regulated by a large number of genes, genetic interactions, and environmental influences. The ability of Icelandic horses to perform the gait 'pace' is largely influenced by a single mutation in the DMRT3 gene, but genetic modifiers likely exist. The aim of this study was to identify novel genetic factors that influence pacing ability and quality of the gait through a genome-wide association study (GWAS) and correlate new findings to previously identified quantitative trait loci (QTL) and mutations. RESULTS: Three hundred and seventy-two Icelandic horses were genotyped with the 670 K+ Axiom Equine Genotyping Array, of which 362 had gait scores from breeding field tests. A GWAS revealed several SNPs on Equus caballus chromosomes (ECA) 4, 9, and 20 that were associated (p < 1.0 × 10-5) with the breeding field test score for pace. The two novel QTL on ECA4 and 9 were located within the RELN and STAU2 genes, respectively, which have previously been associated with locomotor behavior in mice. Haplotypes were identified and the most frequent one for each of these two QTL had a large favorable effect on pace score. The second most frequent haplotype for the RELN gene was positively correlated with scores for tölt, trot, gallop, and canter. Similarly, the second most frequent haplotype for the STAU2 gene had favorable effects on scores for trot and gallop. Different genotype ratios of the haplotypes in the RELN and STAU2 genes were also observed in groups of horses with different levels of pacing ability. Furthermore, interactions (p < 0.05) were detected for the QTL in the RELN and STAU2 genes with the DMRT3 gene. The novel QTL on ECA4, 9, and 20, along with the effects of the DMRT3 variant, were estimated to account jointly for 27.4% of the phenotypic variance of the gait pace. CONCLUSIONS: Our findings provide valuable information about the genetic architecture of pace beyond the contribution of the DMRT3 gene and indicate genetic interactions that contribute to the complexity of this trait. Further investigation is needed to fully understand the underlying genetic factors and interactions.


Asunto(s)
Estudio de Asociación del Genoma Completo , Factores de Transcripción , Caballos/genética , Animales , Ratones , Islandia , Factores de Transcripción/genética , Genotipo , Marcha/genética , Polimorfismo de Nucleótido Simple
4.
J Anim Breed Genet ; 140(3): 295-303, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36645266

RESUMEN

Swedish Red (SR) and Swedish Holstein (SH) are the dominating commercial dairy cattle breeds in Sweden. Both breeds have undergone substantial changes during the last half century due to intensive selection for breeding goal traits, but also resulting from increased international exchange of breeding animals and genetic drift. The aim of this study was to learn more about changes in genomic diversity and inbreeding in these two breeds over time. Therefore, semen samples from old bulls were genotyped using the 150K Genomic Profiler SNP array and combined with 50K SNP array genotype data, obtained for more recent bulls from the Nordic Cattle Genetic Evaluation. Different measures of level of homozygosity, genomic inbreeding, relatedness and changes in allele frequency were estimated for bulls born during different time periods from the 1950s until 2020. In total, more than 33,000 SNPs for 9737 SR and 5041 SH bulls were included in the analysis using PLINK v1.9. The results showed higher average homozygosity for SR than for SH bulls up to around 2000, but the difference was very small after that. The average inbreeding coefficients based on deviation from expected homozygosity as well as on runs of homozygosity decreased until the early 1980s in both breeds, whereafter they started to increase again for SH, but stayed more stable for SR. From the 1990s onwards, SH displayed higher average inbreeding coefficients than SR. In the last studied birth year group (2015-2020), the mean inbreeding coefficient based on runs of homozygosity was 5.9% for SH and 3.7% for SR. A principal component analysis showed a pattern of genetic relationships related to the birth year period of the bulls, illustrating the gradual change of the genetic material within each breed. The change in allele frequency over time was generally larger for SH than for SR. The results show that the inbreeding level was higher half a century ago than at present, and the inbreeding levels were lower than in some other studied populations. Still, the increase seen for inbreeding coefficients and homozygosity, especially in SH during recent years, should be considered in future breeding strategies.


Asunto(s)
Genoma , Endogamia , Bovinos/genética , Animales , Masculino , Suecia , Linaje , Genotipo , Genómica/métodos , Homocigoto , Polimorfismo de Nucleótido Simple
5.
J Anim Breed Genet ; 140(1): 79-91, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35830346

RESUMEN

In many European warmblood studbooks, clear specialization toward either jumping or dressage horses is evident. The Swedish Warmblood (SWB) is also undergoing such specialization, creating a possible need for separate breeding programs and a discipline-specific Young Horse Test (YHT). This study investigated how far specialization of the SWB breed has proceeded and the potential consequences. Individuals in a population of 122,054 SWB horses born between 1980 and 2020 were categorized according to pedigree as jumping (J), dressage (D), allround (AR), or thoroughbred (Th). Data on 8,713 J horses and 6,477 D horses assessed for eight traits in YHT 1999-2020 were used to estimate genetic parameters within and between J and D horses and between different periods. Future scenarios in which young horses are assessed for either jumping or dressage traits at YHT were also analyzed. More than 80% of horses born in 1980-1985 were found to be AR horses, while 92% of horses born in 2016-2020 belonged to a specialized category. The average relationship within J or D category was found to increase during the past decade, whereas the relationship between these categories decreased. Heritability estimates for gait traits were 0.42-0.56 for D horses and 0.25-0.38 for J horses. For jumping traits, heritability estimates were 0.17-0.26 for J horses and 0.10-0.18 for D horses. Genetic correlations between corresponding traits assessed in J and D horses were within the range 0.48-0.81, with a tendency to be lower in the late study period. In the future scenarios, heritability and genetic variance both decreased for traits that were not assessed in all horses, indicating that estimation of breeding value and genetic progress for these traits could be affected by a specialized YHT. However, ranking of sires based on estimated breeding values (EBVs) and accuracy of EBVs was only slightly altered for discipline-specific traits. With continued specialization in SWB, specialization of the YHT should thus be considered.


Asunto(s)
Caballos/genética , Animales
6.
J Anim Breed Genet ; 140(4): 366-375, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36852464

RESUMEN

Assessment protocols to describe the various aspects of conformation, gait and jumping traits on a linear scale were introduced at young horse tests for Swedish Warmblood horses in 2013. The traits scored on a linear scale are assumed to be less subjective and more easily compared across populations than the traditional evaluated traits that are scored relative to the breeding goal. However, the resulting number of traits is considerable, and several of the traits are correlated. The aim of this study was to investigate the interrelationship between the different evaluated and linearly scored traits in Swedish Warmbloods using factor analysis. In total, 20,935 horses born 1996-2017 had information on evaluated traits, and 5450 of these also had linearly scored trait records assessed since 2014 when the protocol was updated. A factor analysis with varimax rotation was performed separately for evaluated and linearly scored traits using the Psych package in R. Height at withers was included in both analyses. A total of four factors for evaluated traits and 14 factors for linearly scored traits were kept for further analysis. Missing values for individual traits in horses with linearly scored trait records were imputed based on correlated traits before factor scores were calculated using factor loadings. Genetic parameters for, and correlations between, the resulting underlying factors were estimated using multiple-trait animal models in the BLUPF90 package. Heritability estimates were on a similar level as for the traits currently used in the genetic evaluation, ranging from 0.05 for the factor for linearly scored traits named L.behaviour (dominated by traits related to behaviour) to 0.59 for the factor for evaluated traits named E.size (dominated by height at withers and conformation). For both types of traits, separate factors were formed for jumping and gait traits, as well as for body size. High genetic correlations were estimated between such corresponding factors for evaluated traits and factors for linearly scored traits. In conclusion, factor analysis could be used to reduce the number of traits to be included in multiple-trait genetic evaluation or in genomic analysis for warmblood horses. It can also contribute to a better understanding of the interrelationships among the assessed traits and be useful to decide on subgroups of traits to be used in several multiple-trait evaluations on groups of original traits.


Asunto(s)
Marcha , Caballos/genética , Animales , Suecia , Marcha/genética , Fenotipo , Tamaño Corporal , Análisis Factorial
7.
Genet Sel Evol ; 54(1): 4, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35062868

RESUMEN

BACKGROUND: Warmblood fragile foal syndrome (WFFS) is a monogenetic defect caused by a recessive lethal missense point mutation in the procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1 gene (PLOD1, c.2032G>A). The majority of homozygous WFFS horses are aborted during gestation. Clinical signs of affected horses include fragile skin, skin and mucosa lacerations, hyperextension of the articulations, and hematomas. In spite of its harmful effect, a relatively high frequency of WFFS carriers has been found in Warmblood horses, suggesting a heterozygote advantage. Thus, in this study our aims were to: (1) estimate the frequency of WFFS carriers in the Swedish Warmblood breed (SWB), (2) estimate the effect of WFFS carrier genotype on performance traits in two SWB subpopulations bred for different disciplines, and (3) simulate the potential effects of balancing selection and different selection strategies on the frequency of carriers. METHODS: In total, 2288 SWB sport horses born between 1971 and 2020 were tested for the WFFS mutation and had estimated breeding values (EBV) for ten traditional evaluating and 50 linear descriptive traits. RESULTS: The frequency of WFFS carriers calculated from a pool of 511 randomly selected SWB horses born in 2017 was equal to 7.4% and ranged from 0.0 to 12.0% among the whole set of tested SWB horses, starting from 1971 till 2020. The effect of the WFFS carrier genotype was significant for several EBV mainly related to movements and dressage traits and especially for horses not bred for the show jumping discipline. Using simulation, we showed that balancing selection can maintain a recessive lethal allele in populations such as the SWB breed over generations and that the frequency is expected to slowly decrease in absence of balancing selection. Finally, we showed that selection against carrier sires can result in a more rapid decrease of the frequency of the mutant allele over time. CONCLUSION: Further research is needed to confirm the apparent association between equine performance and the WFFS carrier genotype. Identification of such associations or new causative mutations for horse performance traits can serve as new tools in horse breeding to select for healthy, sustainable, and better performing horses.


Asunto(s)
Homocigoto , Alelos , Animales , Genotipo , Caballos/genética , Mutación , Suecia
8.
BMC Genomics ; 22(1): 267, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33853519

RESUMEN

BACKGROUND: The back plays a vital role in horse locomotion, where the spine functions as a spring during the stride cycle. A complex interaction between the spine and the muscles of the back contribute to locomotion soundness, gait ability, and performance of riding and racehorses. Conformation is commonly used to select horses for breeding and performance in multiple horse breeds, where the back and croup conformation plays a significant role. The conformation of back and croup plays an important role on riding ability in Icelandic horses. However, the genes behind this trait are still unknown. Therefore, the aim of this study was to identify genomic regions associated with conformation of back and croup in Icelandic horses and to investigate their effects on riding ability. One hundred seventy-seven assessed Icelandic horses were included in the study. A genome-wide association analysis was performed using the 670 K+ Axiom Equine Genotyping Array, and the effects of different haplotypes in the top associated region were estimated for riding ability and additional conformation traits assessed during breeding field tests. RESULTS: A suggestive quantitative trait loci (QTL) for the score of back and croup was detected on Equus caballus (ECA) 22 (p-value = 2.67 × 10- 7). Haplotype analysis revealed two opposite haplotypes, which resulted in higher and lower scores of the back and croup, respectively (p-value < 0.001). Horses with the favorable haplotype were more inclined to have a well-balanced backline with an uphill conformation and had, on average, higher scores for the lateral gaits tölt (p-value = 0.02) and pace (p-value = 0.004). This genomic region harbors three genes: C20orf85, ANKRD60 and LOC100056167. ANKRD60 is associated with body height in humans. C20orf85 and ANKRD60 are potentially linked to adolescent idiopathic scoliosis in humans. CONCLUSIONS: Our results show that the detected QTL for conformation of back and croup is of importance for quality of lateral gaits in Icelandic horses. These findings could result in a genetic test to aid in the selection of breeding horses, thus they are of major interest for horse breeders. The results may also offer a gateway to comparative functional genomics by potentially linking both motor laterality and back inclination in horses with scoliosis in humans.


Asunto(s)
Marcha , Caballos/genética , Sitios de Carácter Cuantitativo , Animales , Marcha/genética , Estudio de Asociación del Genoma Completo , Fenotipo
9.
Genet Sel Evol ; 52(1): 52, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32887549

RESUMEN

BACKGROUND: Thousands of years of natural and artificial selection have resulted in indigenous cattle breeds that are well-adapted to the environmental challenges of their local habitat and thereby are considered as valuable genetic resources. Understanding the genetic background of such adaptation processes can help us design effective breeding objectives to preserve local breeds and improve commercial cattle. To identify regions under putative selection, GGP HD 150 K single nucleotide polymorphism (SNP) arrays were used to genotype 106 individuals representing five Swedish breeds i.e. native to different regions and covering areas with a subarctic cold climate in the north and mountainous west, to those with a continental climate in the more densely populated south regions. RESULTS: Five statistics were incorporated within a framework, known as de-correlated composite of multiple signals (DCMS) to detect signatures of selection. The obtained p-values were adjusted for multiple testing (FDR < 5%), and significant genomic regions were identified. Annotation of genes in these regions revealed various verified and novel candidate genes that are associated with a diverse range of traits, including e.g. high altitude adaptation and response to hypoxia (DCAF8, PPP1R12A, SLC16A3, UCP2, UCP3, TIGAR), cold acclimation (AQP3, AQP7, HSPB8), body size and stature (PLAG1, KCNA6, NDUFA9, AKAP3, C5H12orf4, RAD51AP1, FGF6, TIGAR, CCND2, CSMD3), resistance to disease and bacterial infection (CHI3L2, GBP6, PPFIBP1, REP15, CYP4F2, TIGD2, PYURF, SLC10A2, FCHSD2, ARHGEF17, RELT, PRDM2, KDM5B), reproduction (PPP1R12A, ZFP36L2, CSPP1), milk yield and components (NPC1L1, NUDCD3, ACSS1, FCHSD2), growth and feed efficiency (TMEM68, TGS1, LYN, XKR4, FOXA2, GBP2, GBP5, FGD6), and polled phenotype (URB1, EVA1C). CONCLUSIONS: We identified genomic regions that may provide background knowledge to understand the mechanisms that are involved in economic traits and adaptation to cold climate in cattle. Incorporating p-values of different statistics in a single DCMS framework may help select and prioritize candidate genes for further analyses.


Asunto(s)
Aclimatación , Bovinos/genética , Sitios de Carácter Cuantitativo , Selección Artificial , Altitud , Animales , Bovinos/fisiología , Frío , Linaje , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable
10.
J Anim Breed Genet ; 137(2): 223-233, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31489730

RESUMEN

Equine insect bite hypersensitivity (IBH) is a pruritic skin allergy caused primarily by biting midges, Culicoides spp. IBH susceptibility has polygenic inheritance and occurs at high frequencies in several horse breeds worldwide, causing increased costs and reduced welfare of affected horses. The aim of this study was to identify and validate single nucleotide polymorphisms (SNPs) associated with equine IBH susceptibility. After quality control, 33,523 SNPs were included in a Bayesian genome-wide association study on 177 affected and 178 unaffected Icelandic horses. We report associated regions in E. caballus (ECA) 1, 3, 15 and 18, overlapping with known IBH QTLs in horses, and novel regions containing several genes, together explaining 11.46% of the total genetic variance. For validation, three SNPs on ECA 1 and ECA X (explaining the largest percentage of genetic variance) within 1-mb genomic windows for IBH were genotyped in an independent population of 280 Exmoor ponies. The associated genomic region (152-153 mb) on ECA 1 was confirmed in Exmoor ponies and contains the AQR gene involved in splicing processes and a long non-coding RNA. This study confirms the polygenic nature of IBH susceptibility and suggests a role of transcriptional regulatory mechanisms (e.g., alternative splicing) for IBH predisposition in these horse breeds.


Asunto(s)
Enfermedades de los Caballos/genética , Caballos/genética , Hipersensibilidad/veterinaria , Mordeduras y Picaduras de Insectos/veterinaria , Animales , Cruzamiento , Mapeo Cromosómico/veterinaria , Femenino , Variación Genética , Estudio de Asociación del Genoma Completo/veterinaria , Genotipo , Hipersensibilidad/genética , Mordeduras y Picaduras de Insectos/inmunología , Masculino , Herencia Multifactorial , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
11.
BMC Genomics ; 20(1): 717, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31533613

RESUMEN

BACKGROUND: A growing demand for improved physical skills and mental attitude in modern sport horses has led to strong selection for performance in many warmblood studbooks. The aim of this study was to detect genomic regions with low diversity, and therefore potentially under selection, in Swedish Warmblood horses (SWB) by analysing high-density SNP data. To investigate if such signatures could be the result of selection for equestrian sport performance, we compared our SWB SNP data with those from Exmoor ponies, a horse breed not selected for sport performance traits. RESULTS: The genomic scan for homozygous regions identified long runs of homozygosity (ROH) shared by more than 85% of the genotyped SWB individuals. Such ROH were located on ECA4, ECA6, ECA7, ECA10 and ECA17. Long ROH were instead distributed evenly across the genome of Exmoor ponies in 77% of the chromosomes. Two population differentiation tests (FST and XP-EHH) revealed signatures of selection on ECA1, ECA4, and ECA6 in SWB horses. CONCLUSIONS: Genes related to behaviour, physical abilities and fertility, appear to be targets of selection in the SWB breed. This study provides a genome-wide map of selection signatures in SWB horses, and ground for further functional studies to unravel the biological mechanisms behind complex traits in horses.


Asunto(s)
Cruzamiento , Genómica , Caballos/genética , Deportes , Animales , Femenino , Técnicas de Genotipaje , Homocigoto , Caballos/fisiología , Endogamia , Masculino , Polimorfismo de Nucleótido Simple
12.
BMC Genomics ; 20(1): 759, 2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31640551

RESUMEN

BACKGROUND: Copy Number Variation (CNV) is a common form of genetic variation underlying animal evolution and phenotypic diversity across a wide range of species. In the mammalian genome, high frequency of CNV differentiation between breeds may be candidates for population-specific selection. However, CNV differentiation, selection and its population genetics have been poorly explored in horses. RESULTS: We investigated the patterns, population variation and gene annotation of CNV using the Axiom® Equine Genotyping Array (670,796 SNPs) from a large cohort of individuals (N = 1755) belonging to eight European horse breeds, varying from draught horses to several warmblood populations. After quality control, 152,640 SNP CNVs (individual markers), 18,800 segment CNVs (consecutive SNP CNVs of same gain/loss state or both) and 939 CNV regions (CNVRs; overlapping segment CNVs by at least 1 bp) compared to the average signal of the reference (Belgian draught horse) were identified. Our analyses showed that Equus caballus chromosome 12 (ECA12) was the most enriched in segment CNV gains and losses (~ 3% average proportion of the genome covered), but the highest number of segment CNVs were detected on ECA1 and ECA20 (regardless of size). The Friesian horses showed private SNP CNV gains (> 20% of the samples) on ECA1 and Exmoor ponies displayed private SNP CNV losses on ECA25 (> 20% of the samples). The Warmblood cluster showed private SNP CNV gains located in ECA9 and Draught cluster showed private SNP CNV losses located in ECA7. The length of the CNVRs ranged from 1 kb to 21.3 Mb. A total of 10,612 genes were annotated within the CNVRs. The PANTHER annotation of these genes showed significantly under- and overrepresented gene ontology biological terms related to cellular processes and immunity (Bonferroni P-value < 0.05). We identified 80 CNVRs overlapping with known QTL for fertility, coat colour, conformation and temperament. We also report 67 novel CNVRs. CONCLUSIONS: This work revealed that CNV patterns, in the genome of some European horse breeds, occurred in specific genomic regions. The results provide support to the hypothesis that high frequency private CNVs residing in genes may potentially be responsible for the diverse phenotypes seen between horse breeds.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Variación Genética , Genoma/genética , Caballos/genética , Animales , Cruzamiento , Hibridación Genómica Comparativa , Europa (Continente) , Evolución Molecular , Genética de Población , Genotipo , Fenotipo , Selección Genética
13.
Genet Sel Evol ; 51(1): 56, 2019 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-31578144

RESUMEN

BACKGROUND: Native cattle breeds are important genetic resources given their adaptation to the local environment in which they are bred. However, the widespread use of commercial cattle breeds has resulted in a marked reduction in population size of several native cattle breeds worldwide. Therefore, conservation management of native cattle breeds requires urgent attention to avoid their extinction. To this end, we genotyped nine Swedish native cattle breeds with genome-wide 150 K single nucleotide polymorphisms (SNPs) to investigate the level of genetic diversity and relatedness between these breeds. RESULTS: We used various SNP-based approaches on this dataset to connect the demographic history with the genetic diversity and population structure of these Swedish cattle breeds. Our results suggest that the Väne and Ringamåla breeds originating from southern Sweden have experienced population isolation and have a low genetic diversity, whereas the Fjäll breed has a large founder population and a relatively high genetic diversity. Based on the shared ancestry and the constructed phylogenetic trees, we identified two major clusters in Swedish native cattle. In the first cluster, which includes Swedish mountain cattle breeds, there was little differentiation among the Fjäll, Fjällnära, Swedish Polled, and Bohus Polled breeds. The second cluster consists of breeds from southern Sweden: Väne, Ringamåla and Swedish Red. Interestingly, we also identified sub-structuring in the Fjällnära breed, which indicates different breeding practices on the farms that maintain this breed. CONCLUSIONS: This study represents the first comprehensive genome-wide analysis of the genetic relatedness and diversity in Swedish native cattle breeds. Our results show that different demographic patterns such as genetic isolation and cross-breeding have shaped the genomic diversity of Swedish native cattle breeds and that the Swedish mountain breeds have retained their authentic distinct gene pool without significant contribution from any of the other European cattle breeds that were included in this study.


Asunto(s)
Bovinos/genética , Polimorfismo de Nucleótido Simple , Selección Artificial , Animales , Carácter Cuantitativo Heredable , Suecia
14.
Proc Biol Sci ; 283(1828)2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-27053741

RESUMEN

Elevated carbon dioxide levels and the resultant ocean acidification (OA) are changing the abiotic conditions of the oceans at a greater rate than ever before and placing pressure on marine species. Understanding the response of marine fauna to this change is critical for understanding the effects of OA. Population-level variation in OA tolerance is highly relevant and important in the determination of ecosystem resilience and persistence, but has received little focus to date. In this study, whether OA has the same biological consequences in high-salinity-acclimated population versus a low-salinity-acclimated population of the same species was investigated in the marine isopod Idotea balthica.The populations were found to have physiologically different responses to OA. While survival rate was similar between the two study populations at a future CO2 level of 1000 ppm, and both populations showed increased oxidative stress, the metabolic rate and osmoregulatory activity differed significantly between the two populations. The results of this study demonstrate that the physiological response to OA of populations from different salinities can vary. Population-level variation and the environment provenance of individuals used in OA experiments should be taken into account for the evaluation and prediction of climate change effects.


Asunto(s)
Dióxido de Carbono/química , Isópodos/fisiología , Salinidad , Agua de Mar/química , Aclimatación , Animales , Cambio Climático , Femenino , Concentración de Iones de Hidrógeno , Masculino , Mar del Norte
15.
J Hered ; 107(5): 431-7, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27208149

RESUMEN

Many genes are known to have an influence on conformation and performance traits; however, the role of one gene, Myostatin (MSTN), has been highlighted in recent studies on horses. Myostatin acts as a repressor in the development and regulation of differentiation and proliferative growth of skeletal muscle. Several studies have examined the link between MSTN, conformation, and performance in racing breeds, but no studies have investigated the relationship in Icelandic horses. Icelandic horses, a highly unique breed, are known both for their robust and compact conformation as well as their additional gaits tölt and pace. Three SNPs (g.65868604G>T [PR8604], g.66493737C>T [PR3737], and g.66495826A>G [PR5826]) flanking or within equine MSTN were genotyped in 195 Icelandic horses. The SNPs and haplotypes were analyzed for association with official estimated breeding values (EBV) for conformation traits (n = 11) and gaits (n = 5). The EBV for neck, withers, and shoulders was significantly associated with both PR8604 and PR3737 (P < 0.05). PR8604 was also associated with EBV for total conformation (P = 0.05). These associations were all supported by the haplotype analysis. However, while SNP PR5826 showed a significant association with EBVs for leg stance and hooves (P < 0.05), haplotype analyses for these traits failed to fully support these associations. This study demonstrates the possible role of MSTN on both the form and function of horses from non-racing breeds. Further analysis of Icelandic horses as well as other non-racing breeds would be beneficial and likely help to completely understand the influence of MSTN on conformation and performance in horses.


Asunto(s)
Marcha , Variación Genética , Miostatina/genética , Carácter Cuantitativo Heredable , Animales , Cruzamiento , Femenino , Estudios de Asociación Genética , Genotipo , Haplotipos , Caballos , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple
16.
PLoS Pathog ; 9(2): e1003174, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23459007

RESUMEN

HIV-1 reservoirs preclude virus eradication in patients receiving highly active antiretroviral therapy (HAART). The best characterized reservoir is a small, difficult-to-quantify pool of resting memory CD4(+) T cells carrying latent but replication-competent viral genomes. Because strategies targeting this latent reservoir are now being tested in clinical trials, well-validated high-throughput assays that quantify this reservoir are urgently needed. Here we compare eleven different approaches for quantitating persistent HIV-1 in 30 patients on HAART, using the original viral outgrowth assay for resting CD4(+) T cells carrying inducible, replication-competent viral genomes as a standard for comparison. PCR-based assays for cells containing HIV-1 DNA gave infected cell frequencies at least 2 logs higher than the viral outgrowth assay, even in subjects who started HAART during acute/early infection. This difference may reflect defective viral genomes. The ratio of infected cell frequencies determined by viral outgrowth and PCR-based assays varied dramatically between patients. Although strong correlations with the viral outgrowth assay could not be formally excluded for most assays, correlations achieved statistical significance only for integrated HIV-1 DNA in peripheral blood mononuclear cells and HIV-1 RNA/DNA ratio in rectal CD4(+) T cells. Residual viremia was below the limit of detection in many subjects and did not correlate with the viral outgrowth assays. The dramatic differences in infected cell frequencies and the lack of a precise correlation between culture and PCR-based assays raise the possibility that the successful clearance of latently infected cells may be masked by a larger and variable pool of cells with defective proviruses. These defective proviruses are detected by PCR but may not be affected by reactivation strategies and may not require eradication to accomplish an effective cure. A molecular understanding of the discrepancy between infected cell frequencies measured by viral outgrowth versus PCR assays is an urgent priority in HIV-1 cure research.


Asunto(s)
ADN Viral/análisis , Reservorios de Enfermedades/virología , Infecciones por VIH/virología , VIH/aislamiento & purificación , Provirus/aislamiento & purificación , ARN Viral/análisis , Carga Viral/efectos de los fármacos , Adulto , Anciano , Terapia Antirretroviral Altamente Activa , Linfocitos T CD4-Positivos/efectos de los fármacos , ADN Viral/efectos de los fármacos , ADN Viral/genética , Femenino , VIH/genética , VIH/crecimiento & desarrollo , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/virología , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Provirus/genética , Provirus/crecimiento & desarrollo , ARN Viral/efectos de los fármacos , ARN Viral/genética , Integración Viral/efectos de los fármacos
17.
J Hered ; 106(4): 366-74, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26026046

RESUMEN

Insect bite hypersensitivity (IBH) is the most common allergic skin disease in horses and is caused by biting midges, mainly of the genus Culicoides. The disease predominantly comprises a type I hypersensitivity reaction, causing severe itching and discomfort that reduce the welfare and commercial value of the horse. It is a multifactorial disorder influenced by both genetic and environmental factors, with heritability ranging from 0.16 to 0.27 in various horse breeds. The worldwide prevalence in different horse breeds ranges from 3% to 60%; it is more than 50% in Icelandic horses exported to the European continent and approximately 8% in Swedish-born Icelandic horses. To minimize the influence of environmental effects, we analyzed Swedish-born Icelandic horses to identify genomic regions that regulate susceptibility to IBH. We performed a genome-wide association (GWA) study on 104 affected and 105 unaffected Icelandic horses genotyped using Illumina® EquineSNP50 Genotyping BeadChip. Quality control and population stratification analyses were performed with the GenABEL package in R (λ = 0.81). The association analysis was performed using the Bayesian variable selection method, Bayes C, implemented in GenSel software. The highest percentage of genetic variance was explained by the windows on X chromosomes (0.51% and 0.36% by 73 and 74 mb), 17 (0.34% by 77 mb), and 18 (0.34% by 26 mb). Overlapping regions with previous GWA studies were observed on chromosomes 7, 9, and 17. The windows identified in our study on chromosomes 7, 10, and 17 harbored immune system genes and are priorities for further investigation.


Asunto(s)
Enfermedades de los Caballos/genética , Caballos/genética , Hipersensibilidad Inmediata/veterinaria , Mordeduras y Picaduras de Insectos , Enfermedades de la Piel/veterinaria , Animales , Teorema de Bayes , Cruzamiento , Ceratopogonidae , Femenino , Variación Genética , Estudio de Asociación del Genoma Completo , Hipersensibilidad Inmediata/genética , Islandia , Masculino , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Enfermedades de la Piel/genética
18.
Adv Mar Biol ; 64: 201-45, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23668591

RESUMEN

Nephrops norvegicus represents a very valuable fishery across Europe, and the species possesses a relatively complex life cycle and reproductive biology across spatial and temporal scales. Insights into embryonic and larval biology, and associated abiotic and biotic factors that influence recruitment, are important since this will affect population and species success. Much of the fishery, and indeed scientific sampling, is reliant on trawling, which is likely to cause direct and indirect stresses on adults and developing embryos. We have collated evidence, including that garnered from laboratory studies, to assess the likely effects on reproduction and population. Using know-how from hatchery operations in similar species such as Homarus sp., we also seek to optimise larviculture that could be commercialised to create a hatchery and thus assist stock remediation. This review chapter is therefore divided into three sections: (1) general N. norvegicus reproductive biology, (2) life cycle and larval biology and (3) a comprehensive review of all rearing attempts for this species to date, including a likely way forward for pilot scale and hence commercial restocking operations.


Asunto(s)
Decápodos/crecimiento & desarrollo , Decápodos/fisiología , Estadios del Ciclo de Vida/fisiología , Animales , Larva/crecimiento & desarrollo , Larva/fisiología , Reproducción/fisiología , Maduración Sexual
19.
Adv Mar Biol ; 64: 149-200, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23668590

RESUMEN

The Norway lobster Nephrops norvegicus lives at low-light depths, in muddy substrata of high organic content where water salinities are high and fluctuations in temperature are moderate. In this environment, the lobsters are naturally exposed to a number of potential stressors, many of them as a result of the surficial breakdown of organic material in the sediment. This process (early diagenesis) creates a heterogeneous environment with temporal and spatial fluctuations in a number of compounds such as oxygen, ammonia, metals, and hydrogen sulphide. In addition to this, there are anthropogenically generated stressors, such as human-induced climate change (resulting in elevated temperature and ocean acidification), pollution and fishing. The lobsters are thus exposed to several stressors, which are strongly linked to the habitat in which the animals live. Here, the capacity of Nephrops to deal with these stressors is summarised. Eutrophication-induced hypoxia and subsequent metal remobilisation from the sediment is a well-documented effect found in some wild Nephrops populations. Compared to many other crustacean species, Nephrops is well adapted to tolerate periods of hypoxia, but prolonged or severe hypoxia, beyond their tolerance level, is common in some areas. When the oxygen concentration in the environment decreases, the bioavailability of redox-sensitive metals such as manganese increases. Manganese is an essential metal, which, taken up in excess, has a toxic effect on several internal systems such as chemosensitivity, nerve transmission and immune defence. Since sediment contains high concentrations of metals in comparison to sea water, lobsters may accumulate both essential and non-essential metals. Different metals have different target tissues, though the hepatopancreas, in general, accumulates high concentrations of most metals. The future scenario of increasing anthropogenic influences on Nephrops habitats may have adverse effects on the fitness of the animals.


Asunto(s)
Decápodos/inmunología , Decápodos/fisiología , Estrés Fisiológico/fisiología , Animales , Cambio Climático , Decápodos/microbiología , Ecosistema , Monitoreo del Ambiente , Femenino , Explotaciones Pesqueras , Interacciones Huésped-Patógeno , Actividades Humanas , Masculino , Estrés Fisiológico/efectos de los fármacos , Temperatura , Contaminantes Químicos del Agua
20.
J Infect Dis ; 206(1): 28-34, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22536001

RESUMEN

BACKGROUND: We address the key emerging question of whether Lin(-)/CD34(+) hematopoietic precursor cells (HPCs) represent an important latent reservoir of human immunodeficiency virus type 1 (HIV-1) during long-term suppressive therapy. METHODS: To estimate the frequency of HIV-1 infection in bone marrow, we sorted Lin(-)/CD34(+) HPCs and 3 other cell types (Lin(-)/CD34(-), Lin(-)/CD4(+), and Lin(+)/CD4(+)) from 8 patients who had undetectable viral loads for 3-12 years. Using a single-proviral sequencing method, we extracted, amplified, and sequenced multiple single HIV-1 DNA molecules from these cells and memory CD4(+) T cells from contemporaneous peripheral blood samples. RESULTS: We analyzed 100,000-870,000 bone marrow Lin(-)/CD34(+) HPCs from the 8 patients and found no HIV-1 DNA. We did isolate HIV-1 DNA from their bone marrow Lin(+)/CD4(+) cells that was genetically similar to HIV-1 DNA from lymphoid cells located in the peripheral blood, indicating an exchange of infected cells between these compartments. CONCLUSIONS: The absence of infected HPCs provides strong evidence that the HIV-1 infection frequency of Lin(-)/CD34(+) HPCs from bone marrow, if it occurred, was <.003% (highest upper 95% confidence interval) in all 8 patients. These results strongly suggest that Lin(-)/CD34(+) HPCs in bone marrow are not a source of persistent HIV-1 in patients on long-term suppressive therapy.


Asunto(s)
ADN Viral/genética , ADN Viral/aislamiento & purificación , Infecciones por VIH/virología , VIH-1/genética , VIH-1/aislamiento & purificación , Células Madre Hematopoyéticas/virología , Antígenos CD34/genética , Antígenos CD34/inmunología , Médula Ósea/inmunología , Médula Ósea/virología , Linfocitos T CD4-Positivos/virología , Estudios de Cohortes , Infecciones por VIH/inmunología , VIH-1/inmunología , Células Madre Hematopoyéticas/inmunología , Humanos , Filogenia , Carga Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA