RESUMEN
Alpha-synuclein (aSN) is a membrane-associated and intrinsically disordered protein, well known for pathological aggregation in neurodegeneration. However, the physiological function of aSN is disputed. Pull-down experiments have pointed to plasma membrane Ca2+ -ATPase (PMCA) as a potential interaction partner. From proximity ligation assays, we find that aSN and PMCA colocalize at neuronal synapses, and we show that calcium expulsion is activated by aSN and PMCA. We further show that soluble, monomeric aSN activates PMCA at par with calmodulin, but independent of the autoinhibitory domain of PMCA, and highly dependent on acidic phospholipids and membrane-anchoring properties of aSN. On PMCA, the key site is mapped to the acidic lipid-binding site, located within a disordered PMCA-specific loop connecting the cytosolic A domain and transmembrane segment 3. Our studies point toward a novel physiological role of monomeric aSN as a stimulator of calcium clearance in neurons through activation of PMCA.
Asunto(s)
Calcio , alfa-Sinucleína , Calcio/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , ATPasas Transportadoras de Calcio de la Membrana Plasmática/química , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Membrana Celular/metabolismo , Adenosina Trifosfatasas/metabolismo , Sitios de UniónRESUMEN
Acute pyelonephritis (APN) is most frequently caused by uropathogenic Escherichia coli (UPEC), which ascends from the bladder to the kidneys during a urinary tract infection. Patients with APN have been reported to have reduced renal concentration capacity under challenged conditions, polyuria, and increased aquaporin-2 (AQP2) excretion in the urine. We have recently shown increased AQP2 accumulation in the plasma membrane in cell cultures exposed to E. coli lysates and in the apical plasma membrane of inner medullary collecting ducts in a 5-day APN mouse model. This study aimed to investigate if AQP2 expression in host cells increases UPEC infection efficiency and to identify specific bacterial components that mediate AQP2 plasma membrane insertion. As the transepithelial water permeability in the collecting duct is codetermined by AQP3 and AQP4, we also investigated whether AQP3 and AQP4 localization is altered in the APN mouse model. We show that AQP2 expression does not increase UPEC infection efficiency and that AQP2 was targeted to the plasma membrane in AQP2-expressing cells in response to the two pathogen-associated molecular patterns (PAMPs), lipopolysaccharide and peptidoglycan. In contrast to AQP2, the subcellular localizations of AQP1, AQP3, and AQP4 were unaffected both in lysate-incubated cell cultures and in the APN mouse model. Our finding demonstrated that cellular exposure to lipopolysaccharide and peptidoglycan can trigger the insertion of AQP2 in the plasma membrane revealing a new regulatory pathway for AQP2 plasma membrane translocation, which may potentially be exploited in intervention strategies.NEW & NOTEWORTHY Acute pyelonephritis (APN) is associated with reduced renal concentration capacity and increased aquaporin-2 (AQP2) excretion. Uropathogenic Escherichia coli (UPEC) mediates changes in the subcellular localization of AQP2 and we show that in vitro, these changes could be elicited by two pathogen-associated molecular patterns (PAMPs), namely, lipopolysaccharide and peptidoglycan. UPEC infection was unaltered by AQP2 expression and the other renal AQPs (AQP1, AQP3, and AQP4) were unaltered in APN.
Asunto(s)
Acuaporina 2 , Acuaporina 3 , Pielonefritis , Escherichia coli Uropatógena , Pielonefritis/metabolismo , Pielonefritis/microbiología , Pielonefritis/patología , Animales , Acuaporina 2/metabolismo , Ratones , Escherichia coli Uropatógena/metabolismo , Acuaporina 3/metabolismo , Acuaporina 3/genética , Enfermedad Aguda , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Lipopolisacáridos/toxicidad , Lipopolisacáridos/farmacología , Membrana Celular/metabolismo , Humanos , Acuaporina 4/metabolismo , Acuaporina 4/genética , Peptidoglicano/metabolismo , Riñón/metabolismo , Riñón/patología , Ratones Endogámicos C57BL , Modelos Animales de EnfermedadRESUMEN
It is well known that sepsis and inflammation reduce male fertility. Within the testis, toll-like receptor 3 (TLR3) is constitutively expressed and recognizes double-stranded RNA (dsRNA) from viruses, degraded bacteria, damaged tissues and necrotic cells. To characterize the potential role of TLR3 in response to testicular infections, its expression and downstream signaling were investigated upon challenge with lipopolysaccharides (LPS) in two mouse strains that differ in their immuno-competence regarding T cell-regulated immunity. Thereto, Balb/c and Foxn1nu mice were randomized into six interventional groups treated with either i.v. application of saline or LPS followed by 20 min, 5 h 30 min and 18 h of observation and two sham-treated control groups. LPS administration induced a significant stress response; the amplification was manifested for TLR3 and interleukin 6 (IL6) mRNA in the impaired testis 5 h 30 min after LPS injection. TLR3 immunostaining revealed that TLR3 was primarily localized in spermatocytes. The TLR3 expression displayed different temporal dynamics between both mouse strains. However, immunofluorescence staining indicated only punctual interferon regulatory factor 3 (IRF3) expression upon LPS treatment along with minor alterations in interferon ß (IFNß) mRNA expression. Induction of acute inflammation was closely followed by a significant shift of the Bax/Bcl2 ratio to pro-apoptotic signaling accompanied by augmented TUNEL-positive cells 18 h after LPS injection with again differing patterns in both mouse strains. In conclusion, this study shows the involvement of TLR3 in response to LPS-induced testicular inflammation in immuno-competent and -incompetent mice, yet lacking transmission into its signaling pathway.
Asunto(s)
Apoptosis/inmunología , Orquitis/inmunología , Espermatocitos/inmunología , Testículo/metabolismo , Receptor Toll-Like 3/inmunología , Animales , Factor 3 Regulador del Interferón/inmunología , Interferón beta/inmunología , Lipopolisacáridos/química , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Orquitis/inducido químicamente , Espermatocitos/citología , Testículo/patologíaRESUMEN
Chronic wounds are defined as wounds that fail to proceed through the normal phases of wound healing; a complex process involving different dynamic events including migration of keratinocytes in the epidermis. Chronic wounds are estimated to affect 1-2% of the human population worldwide and are a major socioeconomic burden. The prevalence of chronic wounds is expected to increase with the rising number of elderly and patients with diabetes and obesity, who are at high risk of developing chronic wounds. Since E-cadherin and the water channel aquaporin-3 are important for both skin function and cell migration, and aquaporin-3 is furthermore involved in wound healing of the skin demonstrated by impaired wound healing in aquaporin-3-null mice, we hypothesized that E-cadherin and aquaporin-3 expression may be dysregulated in chronic wounds. Therefore, we investigated the expression of E-cadherin and aquaporin-3 in biopsies from the edges of chronic wounds from human patients. This was accomplished by immunohistochemical stainings of E-cadherin and aquaporin-3 on serial sections followed by qualitative evaluation of staining patterns, which revealed low expression of both E-cadherin and aquaporin-3 at the wound edge. Future studies are needed to reveal if this downregulation is associated with the pathophysiology of chronic wounds.
Asunto(s)
Acuaporina 3 , Piel , Anciano , Animales , Humanos , Ratones , Acuaporina 3/genética , Acuaporina 3/metabolismo , Cadherinas/genética , Queratinocitos/metabolismo , Queratinocitos/patología , Piel/patología , Cicatrización de Heridas/fisiologíaRESUMEN
AIM: Aquaporin-2 (AQP2) shuttling between intracellular vesicles and the apical plasma membrane is pivotal in arginine vasopressin-mediated urine concentration and is dysregulated in multiple diseases associated with water balance disorders. Children and adults with acute pyelonephritis have a urinary concentration defect and studies in children revealed increased AQP2 excretion in the urine. This study aimed to analyse AQP2 trafficking in response to acute pyelonephritis. METHODS: Immunofluorescence analysis was used to evaluate subcellular localization of AQP2 and AQP2-S256A (mimicking non-phosphorylated AQP2 on serine 256) in cells stimulated with bacterial lysates and of AQP2 and pS256-AQP2 in a mouse model at day 5 of acute pyelonephritis. Western blotting was used to evaluate AQP2 levels and AQP2 phosphorylation on S256 upon incubation with bacterial lysates. Time-lapse imaging was used to measure intracellular cAMP levels in response to incubation with bacterial lysates. RESULTS: In cell cultures, lysates from both uropathogenic and nonpathogenic bacteria-mediated AQP2 plasma membrane targeting and increased AQP2 phosphorylation on serine 256 (pS256) without increasing cAMP levels. Both bacterial lysates induced plasma membrane targeting of AQP2-S256A. Immunofluorescence analysis of renal sections from mice after 5 days of acute pyelonephritis revealed apical plasma membrane targeting of AQP2 and pS256-AQP2 in inner medullary collecting ducts. CONCLUSION: Uropathogenic bacteria induce AQP2 plasma membrane targeting in vitro and in vivo. cAMP levels were not elevated by the bacterial lysates and AQP2 plasma membrane targeting could occur without S256 phosphorylation. This may explain increased AQP2 excretion in the urine during acute pyelonephritis.