Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(6): 3773-3784, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38301281

RESUMEN

A longstanding challenge in catalysis by noble metals has been to understand the origin of enhancements of rates of hydrogen transfer that result from the bonding of oxygen near metal sites. We investigated structurally well-defined catalysts consisting of supported tetrairidium carbonyl clusters with single-atom (apical iridium) catalytic sites for ethylene hydrogenation. Reaction of the clusters with ethylene and H2 followed by O2 led to the onset of catalytic activity as a terminal CO ligand at each apical Ir atom was removed and bridging dioxygen ligands replaced CO ligands at neighboring (basal-plane) sites. The presence of the dioxygen ligands caused a 6-fold increase in the catalytic reaction rate, which is explained by the electron-withdrawing capability induced by the bridging dioxygen ligands, consistent with the inference that reductive elimination is rate-determining. Electronic-structure calculations demonstrate an additional role of the dioxygen ligands, changing the mechanism of hydrogen transfer from one involving equatorial hydride ligands to that involving bridging hydride ligands. This mechanism is made evident by an inverse kinetic isotope effect observed in ethylene hydrogenation reactions with H2 and, alternatively, with D2 on the cluster incorporating the dioxygen ligands and is a consequence of quasi-equilibrated hydrogen transfer in this catalyst. The same mechanism accounts for rate enhancements induced by the bridging dioxygen ligands for the catalytic reaction of H2 with D2 to give HD. We posit that the mechanism involving bridging hydride ligands facilitated by oxygen ligands remote from the catalytic site may have some generality in catalysis by oxide-supported noble metals.

2.
Inorg Chem ; 51(6): 3904-9, 2012 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-22401604

RESUMEN

Degradation of white phosphorus (P(4)) in the coordination sphere of transition metals is commonly divided into two major pathways depending on the P(x) ligands obtained. Consecutive metal-assisted P-P bond cleavage of four bonds of the P(4) tetrahedron leads to complexes featuring two P(2) ligands (symmetric cleavage) or one P(3) and one P(1) ligand (asymmetric cleavage). A systematic investigation of the degradation of white phosphorus P(4) to coordinated µ,η(2:2)-bridging diphosphorus ligands in the coordination sphere of cobalt is presented herein as well as isolation of each of the decisive intermediates on the reaction pathway. The olefin complex [Cp*Co((i)Pr(2)Im)(η(2)-C(2)H(4))], 1 (Cp* = η(5)-C(5)Me(5), (i)Pr(2)Im = 1,3-di-isopropylimidazolin-2-ylidene), reacts with P(4) to give [Cp*Co((i)Pr(2)Im)(η(2)-P(4))], 2, the insertion product of [Cp*Co((i)Pr(2)Im)] into one of the P-P bonds. Addition of a further equivalent of the Co(I) complex [Cp*Co((i)Pr(2)Im)(η(2)-C(2)H(4))], 1, induces cleavage of a second P-P bond to yield the dinuclear complex [{Cp*Co((i)Pr(2)Im)}(2)(µ,η(2:2)-P(4))], 3, in which a kinked cyclo-P(4)(4-) ligand bridges two cobalt atoms. Consecutive dissociation of the N-heterocyclic carbene with concomitant rearrangement of the cyclo-P(4) ligand and P-P dissociation leads to complexes [Cp*Co(µ,η(4:2)-P(4))Co((i)Pr(2)Im)Cp*], 4, featuring a P(4) chain, and [{Cp*Co(µ,η(2:2)-P(2))}(2)], 5, in which two isolated P(2)(2-) ligands bridge two [Cp*Co] fragments. Each of these reactions is quantitative if performed on an NMR scale, and each compound can be isolated in high yields and large quantities.

3.
Chem Sci ; 8(7): 4951-4960, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28959418

RESUMEN

A closed Ir4 carbonyl cluster, 1, comprising a tetrahedral metal frame and three sterically bulky tert-butyl-calix[4]arene(OPr)3(OCH2PPh2) (Ph = phenyl; Pr = propyl) ligands at the basal plane, was characterized with variable-temperature 13C NMR spectroscopy, which show the absence of scrambling of the CO ligands at temperatures up to 313 K. This demonstration of distinct sites for the CO ligands was found to extend to the reactivity and catalytic properties, as shown by selective decarbonylation in a reaction with trimethylamine N-oxide (TMAO) as an oxidant, which, reacting in the presence of ethylene, leads to the selective bonding of an ethyl ligand at the apical Ir site. These clusters were supported intact on porous silica and found to catalyze ethylene hydrogenation, and a comparison of the kinetics of the single-hydrogenation reaction and steady-state hydrogenation catalysis demonstrates a unique single-site catalyst-with each site having the same catalytic activity. Reaction orders in the catalytic ethylene hydrogenation reaction of approximately 1/2 and 0 for H2 and C2H4, respectively, nearly match those for conventional noble-metal catalysts. In contrast to oxidative decarbonylation, thermal desorption of CO from silica-supported cluster 1 occurred exclusively at the basal plane, giving rise to sites that do not react with ethylene and are catalytically inactive for ethylene hydrogenation. The evidence of distinctive sites on the cluster catalyst leads to a model that links to hydrogen-transfer catalysis on metals-involving some surface sites that bond to both hydrocarbon and hydrogen and are catalytically engaged (so-called "*" sites) and others, at the basal plane, which bond hydrogen and CO but not hydrocarbon and are reservoir sites (so-called "S" sites).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA