Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ther ; 31(7): 1904-1919, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-36945775

RESUMEN

The function and significance of RAS proteins in cancer have been widely studied for decades. In 2013, the National Cancer Institute established the RAS Initiative to explore innovative approaches for attacking the proteins encoded by mutant forms of RAS genes and to create effective therapies for RAS-driven cancers. This initiative spurred researchers to develop novel approaches and to discover small molecules targeting this protein that was at one time termed "undruggable." More recently, advanced efforts in RAS degraders including PROTACs, linker-based degraders, and direct proteolysis degraders have been explored as novel strategies to target RAS for cancer treatment. These RAS degraders present new opportunities for RAS therapies and may prove fruitful in understanding basic cell biology. Novel delivery strategies will further enhance the efficacy of these therapeutics. In this review, we summarize recent efforts to develop RAS degraders, including PROTACs and E3 adaptor and ligase fusions as cancer therapies. This review also details the direct RAS protease degrader, RAS/RAP1-specific endopeptidase that directly and specifically cleaves RAS.


Asunto(s)
Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Proteolisis , Proteínas/metabolismo , Endopeptidasas/genética , Proteínas ras/genética , Ubiquitina-Proteína Ligasas
2.
bioRxiv ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38948803

RESUMEN

About one-third of all human cancers encode abnormal RAS proteins locked in a constitutively activated state to drive malignant transformation and uncontrolled tumor growth. Despite progress in development of small molecules for treatment of mutant KRAS cancers, there is a need for a pan-RAS inhibitor that is effective against all RAS isoforms and variants and that avoids drug resistance. We have previously shown that the naturally occurring bacterial enzyme RAS/RAP1-specific endopeptidase (RRSP) is a potent RAS degrader that can be re-engineered as a biologic therapy to induce regression of colorectal, breast, and pancreatic tumors. Here, we have developed a strategy for in vivo expression of this RAS degrader via mRNA delivery using a synthetic nonviral gene delivery platform composed of the poly(ethylene glycol)-b-poly(propylene sulfide) (PEG-b-PPS) block copolymer conjugated to a dendritic cationic peptide (PPDP2). Using this strategy, PPDP2 is shown to deliver mRNA to both human and mouse pancreatic cells resulting in RRSP gene expression, activity, and loss of cell proliferation. Further, pancreatic tumors are reduced with residual tumors lacking detectable RAS and phosphorylated ERK. These data support that mRNA-loaded synthetic nanocarrier delivery of a RAS degrader can interrupt the RAS signaling system within pancreatic cancer cells while avoiding side effects during therapy.

3.
Cancers (Basel) ; 13(20)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34680281

RESUMEN

Aromatase inhibitors (AIs) reduce estrogen levels up to 98% as the standard practice to treat postmenopausal women with estrogen receptor-positive (ER+) breast cancer. However, approximately 30% of ER+ breast cancers develop resistance to treatment. Enhanced interferon-alpha (IFNα) signaling is upregulated in breast cancers resistant to AIs, which drives expression of a key regulator of survival, interferon-induced transmembrane protein 1 (IFITM1). However, how upregulated IFNα signaling mediates AI resistance is unknown. In this study, we utilized MCF-7:5C cells, a breast cancer cell model of AI resistance, and demonstrate that these cells exhibit enhanced IFNα signaling and ligand-independent activation of the estrogen receptor (ERα). Experiments demonstrated that STAT1, the mediator of intracellular signaling for IFNα, can interact directly with ERα. Notably, inhibition of IFNα signaling significantly reduced ERα protein expression and ER-regulated genes. In addition, loss of ERα suppressed IFITM1 expression, which was associated with cell death. Notably, chromatin immunoprecipitation experiments validated that both ERα and STAT1 associate with ERE sequences in the IFITM1 promoter. Overall, hyperactivation of IFNα signaling enhances ligand-independent activation of ERα, which promotes ER-regulated, and interferon stimulated gene expression to promote survival in AI-resistant breast cancer cells.

4.
Mol Cancer Res ; 17(5): 1180-1194, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30655323

RESUMEN

The human oncoprotein, mucin 1 (MUC1), drives tumorigenesis in breast carcinomas by promoting epithelial-to-mesenchymal transition (EMT), epigenetic reprogramming, and evasion of immune response. MUC1 interacts with STAT1, through JAK/STAT signaling, and stimulates transcription of IFN-stimulated genes, specifically IFN-induced transmembrane protein 1 (IFITM1). Our laboratory has previously shown that IFITM1 overexpression in aromatase inhibitor (AI)-resistant breast cancer cells promotes aggressiveness. Here, we demonstrate that differential regulation of MUC1 in AI-sensitive (MCF-7 and T-47D) compared with AI-resistant (MCF-7:5C) cells is critical in mediating IFITM1 expression. A tumor microarray of 94 estrogen receptor-positive human breast tumors correlated coexpression of MUC1 and IFITM1 with poor recurrence-free survival, poor overall survival, and AI-resistance. In this study, we investigated the effects of MUC1/IFITM1 on cell survival and proliferation. We knocked down MUC1 levels with siRNA and pharmacologic inhibitors, which abrogated IFITM1 mRNA and protein expression and induced cell death in AI-resistant cells. In vivo, estrogen and ruxolitinib significantly reduced tumor size and decreased expression of MUC1, P-STAT1, and IFITM1. IMPLICATIONS: MUC1 and IFITM1 overexpression drives AI resistance and can be targeted with currently available therapies.Visual Overview: http://mcr.aacrjournals.org/content/molcanres/17/5/1180/F1.large.jpg.


Asunto(s)
Antígenos de Diferenciación/metabolismo , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos , Mucina-1/metabolismo , Factor de Transcripción STAT1/metabolismo , Animales , Antígenos de Diferenciación/genética , Inhibidores de la Aromatasa , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Ratones , Trasplante de Neoplasias , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA