Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nucleic Acids Res ; 49(8): 4308-4324, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33849068

RESUMEN

Variable Number Tandem Repeats (VNTRs) are tandem repeat (TR) loci that vary in copy number across a population. Using our program, VNTRseek, we analyzed human whole genome sequencing datasets from 2770 individuals in order to detect minisatellite VNTRs, i.e., those with pattern sizes ≥7 bp. We detected 35 638 VNTR loci and classified 5676 as commonly polymorphic (i.e. with non-reference alleles occurring in >5% of the population). Commonly polymorphic VNTR loci were found to be enriched in genomic regions with regulatory function, i.e. transcription start sites and enhancers. Investigation of the commonly polymorphic VNTRs in the context of population ancestry revealed that 1096 loci contained population-specific alleles and that those could be used to classify individuals into super-populations with near-perfect accuracy. Search for quantitative trait loci (eQTLs), among the VNTRs proximal to genes, indicated that in 187 genes expression differences correlated with VNTR genotype. We validated our predictions in several ways, including experimentally, through the identification of predicted alleles in long reads, and by comparisons showing consistency between sequencing platforms. This study is the most comprehensive analysis of minisatellite VNTRs in the human population to date.


Asunto(s)
Regulación de la Expresión Génica , Genoma Humano , Repeticiones de Minisatélite , Polimorfismo Genético , Alelos , Conjuntos de Datos como Asunto , Elementos de Facilitación Genéticos , Humanos , Población/genética , Sitio de Iniciación de la Transcripción , Secuenciación Completa del Genoma
2.
BMC Genomics ; 18(1): 65, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28073353

RESUMEN

BACKGROUND: Although many algorithms are now available that aim to characterize different classes of structural variation, discovery of balanced rearrangements such as inversions remains an open problem. This is mainly due to the fact that breakpoints of such events typically lie within segmental duplications or common repeats, which reduces the mappability of short reads. The algorithms developed within the 1000 Genomes Project to identify inversions are limited to relatively short inversions, and there are currently no available algorithms to discover large inversions using high throughput sequencing technologies. RESULTS: Here we propose a novel algorithm, VALOR, to discover large inversions using new sequencing methods that provide long range information such as 10X Genomics linked-read sequencing, pooled clone sequencing, or other similar technologies that we commonly refer to as long range sequencing. We demonstrate the utility of VALOR using both pooled clone sequencing and 10X Genomics linked-read sequencing generated from the genome of an individual from the HapMap project (NA12878). We also provide a comprehensive comparison of VALOR against several state-of-the-art structural variation discovery algorithms that use whole genome shotgun sequencing data. CONCLUSIONS: In this paper, we show that VALOR is able to accurately discover all previously identified and experimentally validated large inversions in the same genome with a low false discovery rate. Using VALOR, we also predicted a novel inversion, which we validated using fluorescent in situ hybridization. VALOR is available at https://github.com/BilkentCompGen/VALOR.


Asunto(s)
Genómica/métodos , Inversión de Secuencia/genética , Algoritmos , Genoma Humano/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA