Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Intervalo de año de publicación
1.
Chem Rev ; 122(7): 7236-7266, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-34995463

RESUMEN

Electrochemical energy conversion is an important supplement for storage and on-demand use of renewable energy. In this regard, microfluidics offers prospects to raise the efficiency and rate of electrochemical energy conversion through enhanced mass transport, flexible cell design, and ability to eliminate the physical ion-exchange membrane, an essential yet costly element in conventional electrochemical cells. Since the 2002 invention of the microfluidic fuel cell, the research field of microfluidics for electrochemical energy conversion has expanded into a great variety of cell designs, fabrication techniques, and device functions with a wide range of utility and applications. The present review aims to comprehensively synthesize the best practices in this field over the past 20 years. The underlying fundamentals and research methods are first summarized, followed by a complete assessment of all research contributions wherein microfluidics was proactively utilized to facilitate energy conversion in conjunction with electrochemical cells, such as fuel cells, flow batteries, electrolysis cells, hybrid cells, and photoelectrochemical cells. Moreover, emerging technologies and analytical tools enabled by microfluidics are also discussed. Lastly, opportunities for future research directions and technology advances are proposed.


Asunto(s)
Suministros de Energía Eléctrica , Microfluídica , Tecnología
2.
Mol Biol Rep ; 51(1): 186, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38270725

RESUMEN

BACKGROUND: Little is known about the companion animals which tested positive in Mexico for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Due to this, it is that we have documented the infection of companion animals, via an exploratory approach in two localities of the Valley of Mexico, in which the companion animal owners tested positive for COVID-19. METHODS: Oropharyngeal and nasopharyngeal swabs were collected from 21 companion animals. Also, a Reverse-Transcription Quantitative Polymerase Chain Reaction was used to test five probes in three SARS-CoV-2 genes. More than one-third (5/14) of these samples were positive for SARS CoV-2 corresponding to dogs. RESULTS: This research translates into the first available report on companion animals with SARS-CoV-2 infection in the most populated area of Mexico. Samples were added chronologically to previous reports prepared in other areas of the country, from February through November 2022. CONCLUSION: Although SARS-CoV-2 infection in dogs is not as common as in other animals, our results suggest that it can be transmitted to dogs by their owners to a greater extent than previously reported.


Asunto(s)
COVID-19 , Animales , Perros , COVID-19/veterinaria , SARS-CoV-2 , Mascotas , México/epidemiología , Ambiente
3.
Phytochem Anal ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693046

RESUMEN

INTRODUCTION: Pectin-oligosaccharides (POS) serve diverse purposes as a food ingredient, antimicrobial and biostimulant in plants, and their functionality is linked to the degree of esterification. Grape and broccoli wastes emerge as environmentally friendly alternatives to obtaining pectin, serving as a sustainable source to producing POS. For example, microwaves have proven to be an effective and sustainable method to extract polysaccharides from plant matrices. OBJECTIVE: This work aims to use grape and broccoli wastes as alternative sources for obtaining pectin by microwave-assisted extraction and biotransformation into POS, which possess biological properties. MATERIAL AND METHODS: The extraction conditions were identified at a power of 400 W, 300 s for the extraction of pectin from grape pomace and broccoli waste. Biotransformation of pectins into POS, using commercial enzyme preparations (Viscozyme L and Pectinase). Characterisation was carried out by Fourier-transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. RESULTS: Physicochemical analysis indicated grape pomace and broccoli waste pectins had galacturonic acid content of 63.81 ± 1.67 and 40.83 ± 2.85 mg 100 mg-1, low degree of esterification of 34.89% and 16.22%, respectively. Biotransformation of pectins into POS resulted in a 20% hydrolysis rate. The main enzymatic activity was polygalacturonase for the degradation of the main structure of the pectin. CONCLUSION: Production of POS from agro-industrial wastes by emerging technologies, such as the combined use of microwave-assisted extraction and enzymatic processes, represents an alternative method for the generation of bioactive compounds with distinctive properties suitable for different applications of interest.

4.
J Environ Manage ; 339: 117866, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37030236

RESUMEN

Agro-industrial by-product valorization as a feedstock for the bioproduction of high-value products has demonstrated a feasible alternative to handle the environmental impact of waste. Oleaginous yeasts are promising cell factories for the industrial production of lipids and carotenoids. Since oleaginous yeasts are aerobic microorganisms, studying the volumetric mass transfer (kLa) could facilitate the scale-up and operation of bioreactors to grant the industrial availability of biocompounds. Scale-up experiments were performed to assess the simultaneous production of lipids and carotenoids using the yeast Sporobolomyces roseus CFGU-S005 and comparing the yields in batch and fed-batch mode cultivation using agro-waste hydrolysate in a 7 L bench-top bioreactor. The results indicate that oxygen availability in the fermentation affected the simultaneous production of metabolites. The highest production of lipids (3.4 g/L) was attained using the kLa value of 22.44 h-1, while higher carotenoid accumulation of 2.58 mg/L resulted when agitation speed was increased to 350 rpm (kLa 32.16 h-1). The adapted fed-batch mode in the fermentation increased the production yields two times. The fatty acid profile was affected according to supplied aeration and after the fed-batch cultivation mode. This study showed the scale-up potential of the bioprocess using the strain S. roseus in the obtention of microbial oil and carotenoids by the valorization of agro-industrial byproducts as a carbon source.


Asunto(s)
Reactores Biológicos , Carotenoides , Biomasa , Ácidos Grasos , Fermentación
5.
J Environ Manage ; 347: 119067, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37778074

RESUMEN

In the pursuit of sustainability, managing agro-industrial and food processing residues (AFR) efficiently is crucial. This study proposes a systematic approach to convert AFR into valuable products via solid-state fermentation (SSF). Using fungal enzyme production as a case study, this adaptable methodology suits any SSF bioprocess. Initially, AFR's physicochemical properties were evaluated to assess their feasible use as carbon sources and solid matrices for SSF. Then, five strains were screened for their capability to produce enzymes (Xylanase, X; pectinase, P; cellulase, C). Apple pomace (AP) and brewery spent grain (BSG) with Aspergillus sp. (strain G5) were selected. Subsequent steps involved a two-phase statistical approach, identifying critical factors and optimizing them. Process conditions were screened using a Plackett-Burman design, narrowing critical variables to three (BSG/AP, pH, humidity). Response Surface Methodology (Central Composite Design) further optimized these factors for co-synthesis of X, P, and C. The humidity had the most significant effect on the three responses. The optimum conditions depended on each enzyme and were further validated to maximize either X, P or C. The obtained extracts were used for pectin extraction from orange peels. The extract containing primarily xylanase (X = 582.39, P = 22.86, C = 26.10 U mL-1) showed major pectin yield recovery (12.33 ± 0.53%) and it was obtained using the optimal settings of BSG/AP (81/19), humidity (50.40%), and pH (4.58). The findings will enable adjusting process conditions to obtain enzymatic cocktails with a tailored composition for specific applications.


Asunto(s)
Aspergillus , Celulasa , Fermentación , Hidrólisis , Grano Comestible , Pectinas
6.
Molecules ; 27(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35268692

RESUMEN

Rambutan (Nephelium lappaceum L.) is a tropical fruit from Asia which has become the main target of many studies involving polyphenolic analysis. Mexico produces over 8 million tons per year of rambutan, generating a huge amount of agro-industrial waste since only the pulp is used and the peel, which comprises around 45% of the fruit's weight, is left behind. This waste can later be used in the recovery of polyphenolic fractions. In this work, emerging technologies such as microwave, ultrasound, and the hybridization of both were tested in the extraction of phenolic compounds from Mexican rambutan peel. The results show that the hybrid technology extraction yielded the highest polyphenolic content (176.38 mg GAE/g of dry rambutan peel). The HPLC/MS/ESI analysis revealed three majoritarian compounds: geraniin, corilagin, and ellagic acid. These compounds explain the excellent results for the biological assays, namely antioxidant activity evaluated by the DPPH, ABTS, and LOI (Lipid oxidation inhibition) assays that exhibited great antioxidant capacity with IC50 values of 0.098, 0.335, and 0.034 mg/mL respectively, as well as prebiotic activity demonstrated by a µMax (maximum growth) of 0.203 for Lactobacillus paracasei. Lastly, these compounds have shown no hemolytic activity, opening the door for the elaboration of different products in the food, cosmetic, and pharmaceutical industries.


Asunto(s)
Sapindaceae , Frutas/química , Taninos Hidrolizables/análisis , Taninos Hidrolizables/farmacología , México , Microondas , Extractos Vegetales/química , Sapindaceae/química
7.
Plant Foods Hum Nutr ; 75(1): 96-102, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31853903

RESUMEN

Agave bagasse is a fibrous-like material obtained during aguamiel extraction, which is also in contact with indigenous microbiota of agave plant during aguamiel fermentation. This plant is a well-known carrier of the prebiotic fructan-type carbohydrates, which have multiple ascribable health benefits. In the present work, the potential of ashen and green agave bagasse as functional ingredients in supplemented cookies was studied. For its application, the chemical, functional, properties of agave bagasses and formulated cookies were evaluated, as well as the physical properties of cookies. Chemical characterization was carried out by the proximate analysis of both bagasses and cookies, besides, the analysis of oligosaccharides was made by thin-layer chromatography and high-performance anion-exchange chromatography. In the same way, functional properties such as oil holding capacity, organic molecule absorption capacity, swelling capacity, and water holding capacity were analyzed in both agave bagasses and supplemented cookies. Finally, modifications in color and texture due to bagasse addition was studied through an analysis of total color difference and a penetrometric test, respectively. In this sense, ashen and green agave bagasses demonstrated chemical and functional properties for use in the food industry, since they increased oil holding capacity of cookies and transferred prebiotic fructooligosaccharides to both agave bagasse formulations, which remain active as a prebiotic ingredient in cookies after in vitro digestion and cookie manufacture, including thermal treatment. Hence, agave bagasse could be considered a valuable alternative for the addition of the nutritionally-relevant dietary fiber in healthier foods.


Asunto(s)
Agave , Celulosa , Alimentos Fortificados , Fructanos , Prebióticos
8.
Phytochem Anal ; 28(5): 433-438, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28543801

RESUMEN

INTRODUCTION: Pomegranate-husk is the main by-product generated from the pomegranate industry. It is a potential source of compounds highly appreciated by different costumers. Punicalagin is the main compound present in pomegranate-husk. OBJECTIVE: To characterise the pomegranate-husk total polyphenols by HPLC-ESI-MS and to establish a method for the recovery of punicalagin using a medium pressure liquid chromatography (MPLC) system. MATERIALS AND METHODS: The characterisation of total pomegranate-husk polyphenols was carried out using liquid chromatography coupled to mass spectrometry. Thus, 200 mg of pomegranate-husk polyphenols were fractionated by MPLC. The isolated punicalagin was characterised by HPLC-MS and was tested as standard reagent for the measurement of its scavenging capacity reducing DPPH and ABTS radicals. RESULTS: Twenty peaks were identified by analytical HPLC-MS analysis from the pomegranate-husk polyphenols. The main compounds were the punicalagin anomers, punicalin and ellagic acid. The MPLC method allowed three fractions to be obtained. In fraction three 39.40 ± 8.06 mg of punicalagin anomers (purity > 97.9%) were recovered. The scavenging capacity of punicalagin showed an IC50 of 109.53 and 151.50 µg/mL for DPPH and ABTS radicals, respectively. CONCLUSION: The MPLC system was an excellent tool for the separation of the main ellagitannins from pomegranate husk and for the isolation of punicalagin anomers. Fraction three was rich in high purity punicalagin anomers. The IC50 was obtained for DPPH and ABTS radicals. Copyright © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Ácido Elágico/aislamiento & purificación , Taninos Hidrolizables/aislamiento & purificación , Lythraceae/química , Polifenoles/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Espectrometría de Masas
9.
Crit Rev Biotechnol ; 36(2): 259-67, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-25519697

RESUMEN

Currently, prebiotics are all carbohydrates of relatively short chain length. One important group is the fructooligosaccharides (FOS), a special kind of prebiotic associated to the selective stimulation of the activity of certain groups of colonic bacteria. They have a positive and beneficial effect on intestinal microbiota, reducing the incidence of gastrointestinal infections and also possessing a recognized bifidogenic effect. Traditionally, these prebiotic compounds have been obtained through extraction processes from some plants, as well as through enzymatic hydrolysis of sucrose. However, different fermentative methods have also been proposed for the production of FOS, such as solid-state fermentations utilizing various agro-industrial by-products. By optimizing the culture parameters, FOS yields and productivity can be improved. The use of immobilized enzymes and cells has also been proposed as being an effective and economic method for large-scale production of FOS. This article is an overview of the results considering recent studies on FOS biosynthesis, physicochemical properties, sources, biotechnological production and applications.


Asunto(s)
Biotecnología , Oligosacáridos , Prebióticos
10.
Foods ; 13(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38731792

RESUMEN

Phycocyanin is a highly valued pigment present in Spirulina platensis biomass with applications in the food industry in terms of biorefinery concepts; specifically, its antioxidant and antimicrobial capacity are an advantage that could be incorporated into a food matrix. This study aims to use rice husk as an alternative culture medium for S. platensis biomass growth and phycocyanin extraction by ohmic heating processing using a 3D-printed reactor. S. platensis was cultivated in rice husk extract (RHE) from 0-100% (v/v). The highest content of microalgal biomass was 1.75 ± 0.01 g/L, with a specific growth rate of 0.125 ± 0.01 h-1. For the phycocyanin extraction under an ohmic heating process, a 3D-printed reactor was designed and built. To optimize phycocyanin extraction, a central composite rotatable design (CCDR) was evaluated, with three factors: time (min), temperature (°C), and pH. The highest phycocyanin content was 75.80 ± 0.98 mg/g in S. platensis biomass grown with rice husk extract. Ohmic heating is a promising method for rapid phycocyanin extraction, and rice husk as a culture medium is an alternative for the growth of S. platensis biomass in the integration of second- and third-generation biorefineries.

12.
Biosens Bioelectron ; 220: 114868, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36356482

RESUMEN

In this work, we present a novel self-powered approach totally independent from any external energy source. We have developed a self-powered paper-based immunosensor that generates energy in the presence of the biomarker in the sample. In particular, the device - which has been labeled as Immuno-Battery - makes use of magnesium as anode and the widely employed HRP-labeled antibody as cathodic catalyst to detect C-reactive protein (CRP) presence in artificial samples. Feasibility of self-powered sensing is proved by submitting the immuno-battery to a resistive load. In this regime, the sensor provides operation voltages above 1.55 V and maximum power densities from 40 to 571 µW cm-2 that allow for future implementation of an electronic readout circuit. We have demonstrated that sensitivity of the system is not compromised by the self-powered mode operation, as the LOD value delivered by our battery (20 ± 2 ng mL-1) is compliant with LOD values reported for protein detection in paper-based electrochemical immunoassays with chronoamperometric methods. Moreover, as a case study, a LOD of 269 ± 39 ng mL-1 is obtained for CRP detection, in accordance with available commercial high-sensitivity CRP detection kits. This proof-of-concept opens the path towards the development of digital diagnostic devices in a sustainable and affordable manner.


Asunto(s)
Técnicas Biosensibles , Inmunoensayo , Suministros de Energía Eléctrica , Electrodos
13.
bioRxiv ; 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37333178

RESUMEN

Background: Optic neuropathy (ON) is a major cause of irreversible blindness, yet the molecular determinants that contribute to neuronal demise have not been fully elucidated. Several studies have identified 'ephrin signaling' as one of the most dysregulated pathways in the early pathophysiology of ON with varied etiologies. Developmentally, gradients in ephrin signaling coordinate retinotopic mapping via repulsive modulation of cytoskeletal dynamics in neuronal membranes. Little is known about the role ephrin signaling played in the post-natal visual system and its correlation with the onset of optic neuropathy. Methods: Postnatal mouse retinas were collected for mass spectrometry analysis for Eph receptors. Optic nerve crush (ONC) model was employed to induce optic neuropathy, and proteomic changes during the acute phase of neuropathic onset were analyzed. Confocal and super-resolution microscopy determined the cellular localization of activated Eph receptors after ONC injury. Eph receptor inhibitors assessed the neuroprotective effect of ephrin signaling modulation. Results: Mass spectrometry revealed expression of seven Eph receptors (EphA2, A4, A5, B1, B2, B3, and B6) in postnatal mouse retinal tissue. Immunoblotting analysis indicated a significant increase in phosphorylation of these Eph receptors 48 hours after ONC. Confocal microscopy demonstrated the presence of both subclasses of Eph receptors in the inner retinal layers. STORM super-resolution imaging combined with optimal transport colocalization analysis revealed a significant co-localization of activated Eph receptors with injured neuronal processes, compared to uninjured neuronal and/or injured glial cells, 48 hours post-ONC. Eph receptor inhibitors displayed notable neuroprotective effects after 6 days of ONC injury. Conclusions: Our findings demonstrate the functional presence of diverse Eph receptors in the postnatal mammalian retina, capable of modulating multiple biological processes. Pan-Eph receptor activation contributes to the onset of neuropathy in ONs, with preferential activation of Eph receptors on neuronal processes in the inner retina following optic nerve injury. Notably, Eph receptor activation precedes neuronal loss. We observed neuroprotective effects upon inhibiting Eph receptors. Our study highlights the importance of investigating this repulsive pathway in early optic neuropathies and provides a comprehensive characterization of the receptors present in the developed retina of mice, relevant to both homeostasis and disease processes.

14.
Eye Vis (Lond) ; 10(1): 42, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37779186

RESUMEN

BACKGROUND: Optic neuropathy is a major cause of irreversible blindness, yet the molecular determinants that contribute to neuronal demise have not been fully elucidated. Several studies have identified 'ephrin signaling' as one of the most dysregulated pathways in the early pathophysiology of optic neuropathy with varied etiologies. Developmentally, gradients in ephrin signaling coordinate retinotopic mapping via repulsive modulation of cytoskeletal dynamics in neuronal membranes. Little is known about the role ephrin signaling plays in the post-natal visual system and its correlation with the onset of optic neuropathy. METHODS: Postnatal mouse retinas were collected for mass spectrometry analysis for erythropoietin-producing human hepatocellular (Eph) receptors. Optic nerve crush (ONC) model was employed to induce optic neuropathy, and proteomic changes during the acute phase of neuropathic onset were analyzed. Confocal and super-resolution microscopy determined the cellular localization of activated Eph receptors after ONC injury. Eph receptor inhibitors assessed the neuroprotective effect of ephrin signaling modulation. RESULTS: Mass spectrometry revealed expression of seven Eph receptors (EphA2, A4, A5, B1, B2, B3, and B6) in postnatal mouse retinal tissue. Immunoblotting analysis indicated a significant increase in phosphorylation of these Eph receptors 48 h after ONC. Confocal microscopy demonstrated the presence of both subclasses of Eph receptors within the retina. Stochastic optical reconstruction microscopy (STORM) super-resolution imaging combined with optimal transport colocalization analysis revealed a significant co-localization of activated Eph receptors with injured neuronal cells, compared to uninjured neuronal and/or injured glial cells, 48 h post-ONC. Eph receptor inhibitors displayed notable neuroprotective effects for retinal ganglion cells (RGCs) after six days of ONC injury. CONCLUSIONS: Our findings demonstrate the functional presence of diverse Eph receptors in the postnatal mammalian retina, capable of modulating multiple biological processes. Pan-Eph receptor activation contributes to the onset of neuropathy in optic neuropathies, with preferential activation of Eph receptors on neuronal processes in the inner retina following optic nerve injury. Notably, Eph receptor activation precedes neuronal loss. We observed a neuroprotective effect on RGCs upon inhibiting Eph receptors. Our study highlights the importance of investigating this repulsive pathway in early optic neuropathies and provides a comprehensive characterization of the receptors present in the developed retina of mice, relevant to both homeostasis and disease processes.

15.
Foods ; 12(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36832976

RESUMEN

The present work describes the purification of an enzyme capable of degrading punicalagin. The enzyme was produced by Aspergillus niger GH1 by solid-state fermentation, and the enzyme production was induced by using ellagitannins as the sole carbon source. The purification steps included the concentration by lyophilization, desalting, anionic exchange, and gel filtration chromatography. The enzyme kinetic constants were calculated by using punicalagin, methyl gallate, and sugar beet arabinans. The molecular mass of the protein was estimated by SDS-PAGE. The identified bands were excised and digested using trypsin, and the peptides were submitted to HPLC-MS/MS analysis. The docking analysis was conducted, and a 3D model was created. The purification fold increases 75 times compared with the cell-free extract. The obtained Km values were 0.053 mM, 0.53% and 6.66 mM for punicalagin, sugar beet arabinans and methyl gallate, respectively. The optimal pH and temperature for the reaction were 5 and 40 °C, respectively. The SDS-PAGE and native PAGE analysis revealed the presence of two bands identified as α-l-arabinofuranosidase. Both enzymes were capable of degrading punicalagin and releasing ellagic acid.

16.
J Biol Chem ; 286(8): 6602-13, 2011 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-21148553

RESUMEN

Cellular stress induced by nutrient deprivation, hypoxia, and exposure to many chemotherapeutic agents activates an evolutionarily conserved cell survival pathway termed autophagy. This pathway enables cancer cells to undergo self-digestion to generate ATP and other essential biosynthetic molecules to temporarily avoid cell death. Therefore, disruption of autophagy may sensitize cancer cells to cell death and augment chemotherapy-induced apoptosis. Chloroquine and its analog hydroxychloroquine are the only clinically relevant autophagy inhibitors. Because both of these agents induce ocular toxicity, novel inhibitors of autophagy with a better therapeutic index are needed. Here we demonstrate that the small molecule lucanthone inhibits autophagy, induces lysosomal membrane permeabilization, and possesses significantly more potent activity in breast cancer models compared with chloroquine. Exposure to lucanthone resulted in processing and recruitment of microtubule-associated protein 1 light chain 3 (LC3) to autophagosomes, but impaired autophagic degradation as revealed by transmission electron microscopy and the accumulation of p62/SQSTM1. Microarray analysis, qRT-PCR, and immunoblotting determined that lucanthone stimulated a large induction in cathepsin D, which correlated with cell death. Accordingly, knockdown of cathepsin D reduced lucanthone-mediated apoptosis. Subsequent studies using p53(+/+) and p53(-/-) HCT116 cells established that lucanthone induced cathepsin D expression and reduced cancer cell viability independently of p53 status. In addition, lucanthone enhanced the anticancer activity of the histone deacetylase inhibitor vorinostat. Collectively, our results demonstrate that lucanthone is a novel autophagic inhibitor that induces apoptosis via cathepsin D accumulation and enhances vorinostat-mediated cell death in breast cancer models.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Catepsina D/metabolismo , Lucantona/farmacología , Esquistosomicidas/farmacología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antineoplásicos/agonistas , Antineoplásicos/farmacología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Catepsina D/genética , Línea Celular Tumoral , Sinergismo Farmacológico , Perfilación de la Expresión Génica , Humanos , Ácidos Hidroxámicos/agonistas , Ácidos Hidroxámicos/farmacología , Membranas Intracelulares/metabolismo , Lucantona/agonistas , Lisosomas/genética , Lisosomas/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Permeabilidad/efectos de los fármacos , Fagosomas/genética , Fagosomas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Esquistosomicidas/agonistas , Proteína Sequestosoma-1 , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Vorinostat
17.
J Sci Food Agric ; 92(13): 2575-80, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22926924

RESUMEN

Halophilic micro-organisms are able to survive in high salt concentrations because they have developed diverse biochemical, structural and physiological modifications, allowing the catalytic synthesis of proteins with interesting physicochemical and structural properties. The main characteristic of halophilic enzymes that allows them to be considered as a novel alternative for use in the biotechnological industries is their polyextremophilicity, i.e. they have the capacity to be thermostable, tolerate a wide range of pH, withstand denaturation and tolerate high salt concentrations. However, there have been relatively few studies on halophilic enzymes, with some being based on their isolation and others on their characterisation. These enzymes are scarcely researched because attention has been focused on other extremophile micro-organisms. Only a few industrial applications of halophilic enzymes, principally in the fermented food, textile, pharmaceutical and leather industries, have been reported. However, it is important to investigate applications of these enzymes in more biotechnological processes at both the chemical and the molecular level. This review discusses the modifications of these enzymes, their industrial applications and research perspectives in different biotechnological areas.


Asunto(s)
Biotecnología , Hidrolasas , Industrias , Tolerancia a la Sal
18.
Int J Biol Macromol ; 209(Pt A): 290-298, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35398384

RESUMEN

An Antarctic yeast was cultivated to produce and enzymatic extract with polygalacturonase activity, whose biochemical properties were studied. It assisted pectin extraction from lime pomace at 20 °C. The extract produced by Tausonia pullulans 8E had an optimum temperature of 40 °C and optimum pH of 5.0. At 20 °C, it displayed 54% of relative activity. A good pH-stability and thermostability were observed. Hg+2 and Co+2 inhibited its activity in 40 and 11%, respectively. Pectin was obtained from lime pomace at 20 °C, with 15% of yield after 120 min extraction. Uronic acid (46%) and neutral sugars (53%) were determined. Pectin's molecular weight was estimated in the order of 100,000 g mol-1. By anion-exchange chromatography, pectin-linked and free neutral sugars were observed. The high-methoxyl pectin was used to prepare low-calorie gels. It was demonstrated that this cold-active enzyme allows enzymatic-assisted pectin extraction at 20 °C.


Asunto(s)
Pectinas , Poligalacturonasa , Compuestos de Calcio , Concentración de Iones de Hidrógeno , Óxidos , Pectinas/química , Azúcares , Temperatura
19.
Energy Environ Sci ; 15(7): 2900-2915, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35923415

RESUMEN

The natural environment has always been a source of inspiration for the research community. Nature has evolved over thousands of years to create the most complex living systems, with the ability to leverage inner and outside energetic interactions in the most efficient way. This work presents a flow battery profoundly inspired by nature, which mimics the fluid transport in plants to generate electric power. The battery was ecodesigned to meet a life cycle for precision agriculture (PA) applications; from raw material selection to disposability considerations, the battery is conceived to minimize its environmental impact while meeting PA power requirements. The paper-based fluidic system relies on evaporation as the main pumping force to pull the reactants through a pair of porous carbon electrodes where the electrochemical reaction takes place. This naturally occurring transpiration effect enables to significantly expand the operational lifespan of the battery, overcoming the time-limitation of current capillary-based power sources. Most relevant parameters affecting the battery performance, such as evaporation flow and redox species degradation, are thoroughly studied to carry out device optimization. Flow rates and power outputs comparable to those of capillary-based power sources are achieved. The prototype practicality has been demonstrated by powering a wireless plant-caring device. Standardized biodegradability and phytotoxicity assessments show that the battery is harmless to the environment at the end of its operational lifetime. Placing sustainability as the main driver leads to the generation of a disruptive battery concept that aims to address societal needs within the planetary environmental boundaries.

20.
Foods ; 12(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36613377

RESUMEN

Agroindustrial activities generate various residues or byproducts which are inefficiently utilized, impacting the environment and increasing production costs. These byproducts contain significant amounts of bioactive compounds, including dietary fiber with associated phenolic compounds, known as antioxidant dietary fiber (ADF). Phenolic compounds are related to the prevention of diseases related to oxidative stress, such as neurodegenerative and cardiovascular diseases. The mechanism of ADF depends on its chemical structure and the interactions between the dietary fiber and associated phenolic compounds. This work describes ADF, the main byproducts considered sources of ADF, its mechanisms of action, and its potential use in the formulation of foods destined for human consumption. ADF responds to the demand for low-cost, functional ingredients with great health benefits. A higher intake of antioxidant dietary fiber contributes to reducing the risk of diseases such as type II diabetes, colon cancer, obesity, and kidney stones, and has bile-acid retention-excretion, gastrointestinal laxative, hypoglycemic, hypocholesterolemic, prebiotic, and cardioprotective effects. ADF is a functional, sustainable, and profitable ingredient with different applications in agroindustry; its use can improve the technofunctional and nutritional properties of food, helping to close the cycle following the premise of the circular economy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA