Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Pflugers Arch ; 466(9): 1831-44, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24327207

RESUMEN

Friedreich ataxia (FRDA), a recessive neurodegenerative disorder commonly associated with hypertrophic cardiomyopathy, is due to GAA repeat expansions within the first intron of the frataxin (FXN) gene encoding the mitochondrial protein involved in iron-sulfur cluster biosynthesis. The triplet codon repeats lead to heterochromatin-mediated gene silencing and loss of frataxin. Nevertheless, inadequacy of existing FRDA-cardiac cellular models limited cardiomyopathy studies. We tested the hypothesis that iron homeostasis deregulation accelerates reduction in energy synthesis dynamics which contributes to impaired cardiac calcium homeostasis and contractile force. Silencing of FXN expressions occurred both in somatic FRDA-skin fibroblasts and two of the induced pluripotent stem cells (iPSC) clones; a sign of stress condition was shown in FRDA-iPSC cardiomyocytes with disorganized mitochondrial network and mitochondrial DNA (mtDNA) depletion; hypertrophic cardiac stress responses were observed by an increase in α-actinin-positive cell sizes revealed by FACS analysis as well as elevation in brain natriuretic peptide (BNP) gene expression; the intracellular iron accumulated in FRDA cardiomyocytes might be due to attenuated negative feedback response of transferring receptor (TSFR) expression and positive feedback response of ferritin (FTH1); energy synthesis dynamics, in terms of ATP production rate, was impaired in FRDA-iPSC cardiomyocytes, which were prone to iron overload condition. Energetic insufficiency determined slower Ca(2+) transients by retarding calcium reuptake to sarcoplasmic reticulum (SR) and impaired the positive inotropic and chronotropic responses to adrenergic stimulation. Our data showed for the first time that FRDA-iPSCs cardiac derivatives represent promising models to study cardiac stress response due to impaired iron homeostasis condition and mitochondrial damages. The cardiomyopathy phenotype was accelerated in an iron-overloaded condition early in calcium homeostasis aspect.


Asunto(s)
Cardiomiopatías , Ataxia de Friedreich/complicaciones , Técnicas In Vitro , Células Madre Pluripotentes , Adulto , Cardiomiopatías/etiología , Femenino , Ataxia de Friedreich/genética , Humanos , Sobrecarga de Hierro/complicaciones , Proteínas de Unión a Hierro/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Frataxina
2.
Chin J Cancer ; 32(4): 205-12, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22704487

RESUMEN

The discovery of induced pluripotent stem cells(iPSCs) is a promising advancement in the field of regenerative medicine. Previous studies have indicated that the teratoma-forming propensity of iPSCs is variable; however, the relationship between tumorigenic potential and genomic instability in human iPSCs (HiPSCs) remains to be fully elucidated. Here, we evaluated the malignant potential of HiPSCs by using both colony formation assays and tumorigenicity tests. We demonstrated that HiPSCs formed tumorigenic colonies when grown in cancer cell culture medium and produced malignancies in immunodeficient mice. Furthermore, we analyzed genomic instability in HiPSCs using whole-genome copy number variation analysis and determined that the extent of genomic instability was related with both the cells' propensity to form colonies and their potential for tumorigenesis. These findings indicate a risk for potential malignancy of HiPSCs derived from genomic instability and suggest that quality control tests, including comprehensive tumorigenicity assays and genomic integrity validation, should be rigorously executed before the clinical application of HiPSCs. In addition, HiPSCs should be generated through the use of combined factors or other approaches that decrease the likelihood of genomic instability.


Asunto(s)
Carcinogénesis , Variaciones en el Número de Copia de ADN , Inestabilidad Genómica , Células Madre Pluripotentes Inducidas , Teratoma/etiología , Animales , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/trasplante , Ratones , Ratones SCID , Células 3T3 NIH , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Teratocarcinoma/etiología , Ensayo de Tumor de Célula Madre
3.
J Biol Chem ; 285(15): 11227-34, 2010 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-20139068

RESUMEN

The umbilical cord and placenta are extra-embryonic tissues of particular interest for regenerative medicine. They share an early developmental origin and are a source of vast amounts of cells with multilineage differentiation potential that are poorly immunogenic and without controversy. Moreover, these cells are likely exempt from incorporated mutations when compared with juvenile or adult donor cells such as skin fibroblasts or keratinocytes. Here we report the efficient generation of induced pluripotent stem cells (iPSCs) from mesenchymal cells of the umbilical cord matrix (up to 0.4% of the cells became reprogrammed) and the placental amniotic membrane (up to 0.1%) using exogenous factors and a chemical mixture. iPSCs from these 2 tissues homogeneously showed human embryonic stem cell (hESC)-like characteristics including morphology, positive staining for alkaline phosphatase, normal karyotype, and expression of hESC-like markers including Nanog, Rex1, Oct4, TRA-1-60, TRA-1-80, SSEA-3, and SSEA-4. Selected clones also formed embryonic bodies and teratomas containing derivatives of the 3 germ layers, and could as well be readily differentiated into functional motor neurons. Among other things, our cell lines may prove useful for comparisons between iPSCs derived from multiple tissues regarding the extent of the epigenetic reprogramming, differentiation ability, stability of the resulting lineages, and the risk of associated abnormalities.


Asunto(s)
Amnios/metabolismo , Técnicas de Cultivo de Célula/métodos , Regulación de la Expresión Génica , Células Madre Mesenquimatosas/citología , Células Madre Pluripotentes/citología , Cordón Umbilical/metabolismo , Animales , Línea Celular , Células Cultivadas/citología , Humanos , Cariotipificación , Células Madre Mesenquimatosas/metabolismo , Ratones , Modelos Biológicos , Neuronas Motoras/metabolismo , Técnicas de Placa-Clamp , Células Madre Pluripotentes/metabolismo , Cordón Umbilical/citología
4.
Nat Commun ; 10(1): 1817, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-31000720

RESUMEN

Neurodegenerative diseases like Alzheimer's disease, Parkinson's disease and Huntington's disease manifest with the neuronal accumulation of toxic proteins. Since autophagy upregulation enhances the clearance of such proteins and ameliorates their toxicities in animal models, we and others have sought to re-position/re-profile existing compounds used in humans to identify those that may induce autophagy in the brain. A key challenge with this approach is to assess if any hits identified can induce neuronal autophagy at concentrations that would be seen in humans taking the drug for its conventional indication. Here we report that felodipine, an L-type calcium channel blocker and anti-hypertensive drug, induces autophagy and clears diverse aggregate-prone, neurodegenerative disease-associated proteins. Felodipine can clear mutant α-synuclein in mouse brains at plasma concentrations similar to those that would be seen in humans taking the drug. This is associated with neuroprotection in mice, suggesting the promise of this compound for use in neurodegeneration.


Asunto(s)
Autofagia/efectos de los fármacos , Reposicionamiento de Medicamentos , Felodipino/farmacología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Animales , Animales Modificados Genéticamente , Línea Celular , Corteza Cerebral/citología , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Embrión de Mamíferos , Embrión no Mamífero , Felodipino/uso terapéutico , Femenino , Humanos , Células Madre Pluripotentes Inducidas , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Fármacos Neuroprotectores/uso terapéutico , Cultivo Primario de Células , Porcinos , Porcinos Enanos , Resultado del Tratamiento , Pez Cebra , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
6.
Stem Cell Reports ; 2(1): 44-51, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24511469

RESUMEN

Somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) using oncogenic transcription factors. However, this method leads to genetic aberrations in iPSCs via unknown mechanisms, which may limit their clinical use. Here, we demonstrate that the supplementation of growth media with antioxidants reduces the genome instability of cells transduced with the reprogramming factors. Antioxidant supplementation did not affect transgene expression level or silencing kinetics. Importantly, iPSCs made with antioxidants had significantly fewer de novo copy number variations, but not fewer coding point mutations, than iPSCs made without antioxidants. Our results suggest that the quality and safety of human iPSCs might be enhanced by using antioxidants in the growth media during the generation and maintenance of iPSCs.


Asunto(s)
Antioxidantes/farmacología , Inestabilidad Genómica , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Reprogramación Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Cell Stem Cell ; 9(6): 575-87, 2011 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-22100412

RESUMEN

Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) resets the epigenome to an embryonic-like state. Vitamin C enhances the reprogramming process, but the underlying mechanisms are unclear. Here we show that the histone demethylases Jhdm1a/1b are key effectors of somatic cell reprogramming downstream of vitamin C. We first observed that vitamin C induces H3K36me2/3 demethylation in mouse embryonic fibroblasts in culture and during reprogramming. We then identified Jhdm1a/1b, two known vitamin-C-dependent H3K36 demethylases, as potent regulators of reprogramming through gain- and loss-of-function approaches. Furthermore, we found that Jhdm1b accelerates cell cycle progression and suppresses cell senescence during reprogramming by repressing the Ink4/Arf locus. Jhdm1b also cooperates with Oct4 to activate the microRNA cluster 302/367, an integral component of the pluripotency machinery. Our results therefore reveal a role for H3K36me2/3 in cell fate determination and establish a link between histone demethylases and vitamin-C-induced reprogramming.


Asunto(s)
Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Reprogramación Celular/efectos de los fármacos , Proteínas F-Box/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Células Madre Pluripotentes/fisiología , Animales , Ciclo Celular/fisiología , Células Cultivadas , Senescencia Celular/fisiología , Proteínas F-Box/genética , Fibroblastos/citología , Fibroblastos/fisiología , Histonas/genética , Histonas/metabolismo , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Lisina/metabolismo , Ratones , Ratones Transgénicos , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/citología
8.
Aging (Albany NY) ; 3(4): 380-90, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21483033

RESUMEN

The term laminopathies defines a group of genetic disorders caused by defects in the nuclear envelope, mostly the lamins. Lamins are the main constituents of the nuclear lamina, a filamentous meshwork associated with the inner nuclear membrane that provides mechanical stability and plays important roles in processes such as transcription, DNA replication and chromatin organization. More than 300 mutations inlamin A/C have been associated with diverse clinical phenotypes, understanding the molecular basis of these diseases may provide a rationale for treating them. Here we describe the generation of induced pluripotent stem cells (iPSCs) from a patient with inherited dilated cardiomiopathy and 2 patients with distinct accelerated forms of aging, atypical Werner syndrome and Hutchinson Gilford progeria, all of which are caused by mutations in lamin A/C. These cell lines were pluripotent and displayed normal nuclear membrane morphology compared to donor fibroblasts. Their differentiated progeny reproduced the disease phenotype, reinforcing the idea that they represent excellent tools for understanding the role of lamin A/C in normal physiology and the clinical diversity associated with these diseases.


Asunto(s)
Cardiomiopatía Dilatada/genética , Línea Celular , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/fisiología , Lamina Tipo A/genética , Progeria/genética , Síndrome de Werner/genética , Animales , Senescencia Celular , Fibroblastos/citología , Fibroblastos/fisiología , Humanos , Mutación , Lámina Nuclear/ultraestructura
9.
Thromb Haemost ; 104(1): 39-44, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20539907

RESUMEN

Recent advances in stem cell biology have transformed the understanding of cell physiology and developmental biology such that it can now play a more prominent role in the clinical application of stem cell and regenerative medicine. Success in the generation of human induced pluripotent stem cells (iPS) as well as related emerging technology on the iPS platform provide great promise in the development of regenerative medicine. Human iPS cells show almost identical properties to human embryonic stem cells (ESC) in pluripotency, but avoid many of their limitations of use. In addition, investigations into reprogramming of somatic cells to pluripotent stem cells facilitate a deeper understanding of human stem cell biology. The iPS cell technology has offered a unique platform for studying the pathogenesis of human disease, pharmacological and toxicological testing, and cell-based therapy. Nevertheless, significant challenges remain to be overcome before the promise of human iPS cell technology can be realised.


Asunto(s)
Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/terapia , Tratamiento Basado en Trasplante de Células y Tejidos , Células Madre Pluripotentes Inducidas/metabolismo , Animales , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/fisiopatología , Tratamiento Basado en Trasplante de Células y Tejidos/tendencias , Evaluación Preclínica de Medicamentos , Humanos , Células Madre Pluripotentes Inducidas/patología , Medicina Regenerativa
10.
Cell Stem Cell ; 7(1): 51-63, 2010 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-20621050

RESUMEN

Epithelial-to-mesenchymal transition (EMT) is a developmental process important for cell fate determination. Fibroblasts, a product of EMT, can be reset into induced pluripotent stem cells (iPSCs) via exogenous transcription factors but the underlying mechanism is unclear. Here we show that the generation of iPSCs from mouse fibroblasts requires a mesenchymal-to-epithelial transition (MET) orchestrated by suppressing pro-EMT signals from the culture medium and activating an epithelial program inside the cells. At the transcriptional level, Sox2/Oct4 suppress the EMT mediator Snail, c-Myc downregulates TGF-beta1 and TGF-beta receptor 2, and Klf4 induces epithelial genes including E-cadherin. Blocking MET impairs the reprogramming of fibroblasts whereas preventing EMT in epithelial cells cultured with serum can produce iPSCs without Klf4 and c-Myc. Our work not only establishes MET as a key cellular mechanism toward induced pluripotency, but also demonstrates iPSC generation as a cooperative process between the defined factors and the extracellular milieu. PAPERCLIP:


Asunto(s)
Reprogramación Celular/fisiología , Células Epiteliales/patología , Mesodermo/patología , Animales , Cadherinas/genética , Cadherinas/metabolismo , Células Cultivadas , Reprogramación Celular/genética , Inmunoprecipitación de Cromatina , Ensayo de Inmunoadsorción Enzimática , Células Epiteliales/metabolismo , Fibroblastos/citología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Mesodermo/metabolismo , Ratones , Modelos Biológicos , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo
11.
Cell Stem Cell ; 6(1): 71-9, 2010 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-20036631

RESUMEN

Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by defined factors. However, the low efficiency and slow kinetics of the reprogramming process have hampered progress with this technology. Here we report that a natural compound, vitamin C (Vc), enhances iPSC generation from both mouse and human somatic cells. Vc acts at least in part by alleviating cell senescence, a recently identified roadblock for reprogramming. In addition, Vc accelerates gene expression changes and promotes the transition of pre-iPSC colonies to a fully reprogrammed state. Our results therefore highlight a straightforward method for improving the speed and efficiency of iPSC generation and provide additional insights into the mechanistic basis of the reprogramming process.


Asunto(s)
Ácido Ascórbico/farmacología , Reprogramación Celular/efectos de los fármacos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Animales , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Técnicas Citológicas , Embrión de Mamíferos/citología , Embrión de Mamíferos/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Humanos , Ratones
12.
Ludovica pediátr ; 4(1): 11-11, ene. 2002.
Artículo en Español | BINACIS | ID: bin-123680
13.
Ludovica pediátr ; 4(1): 1-2, 2002.
Artículo en Español | BINACIS | ID: bin-123670
14.
Ludovica pediátr ; 4(1): 11-11, ene. 2002.
Artículo en Español | LILACS | ID: lil-318762
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA