Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 182(6): 1490-1507.e19, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32916131

RESUMEN

Metabolic reprogramming is a key feature of many cancers, but how and when it contributes to tumorigenesis remains unclear. Here we demonstrate that metabolic reprogramming induced by mitochondrial fusion can be rate-limiting for immortalization of tumor-initiating cells (TICs) and trigger their irreversible dedication to tumorigenesis. Using single-cell transcriptomics, we find that Drosophila brain tumors contain a rapidly dividing stem cell population defined by upregulation of oxidative phosphorylation (OxPhos). We combine targeted metabolomics and in vivo genetic screening to demonstrate that OxPhos is required for tumor cell immortalization but dispensable in neural stem cells (NSCs) giving rise to tumors. Employing an in vivo NADH/NAD+ sensor, we show that NSCs precisely increase OxPhos during immortalization. Blocking OxPhos or mitochondrial fusion stalls TICs in quiescence and prevents tumorigenesis through impaired NAD+ regeneration. Our work establishes a unique connection between cellular metabolism and immortalization of tumor-initiating cells.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Carcinogénesis/metabolismo , Transformación Celular Neoplásica/metabolismo , Dinámicas Mitocondriales , NAD/metabolismo , Células Madre Neoplásicas/metabolismo , Células-Madre Neurales/metabolismo , Fosforilación Oxidativa , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Carcinogénesis/genética , Carcinogénesis/patología , Transformación Celular Neoplásica/patología , Ciclo del Ácido Cítrico/genética , Biología Computacional , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Glucólisis/genética , Espectrometría de Masas , Metabolómica , Microscopía Electrónica de Transmisión , Familia de Multigenes , Células-Madre Neurales/patología , Consumo de Oxígeno/genética , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Análisis de la Célula Individual , Transcriptoma/genética
2.
Cell ; 181(6): 1246-1262.e22, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32442405

RESUMEN

There is considerable inter-individual variability in susceptibility to weight gain despite an equally obesogenic environment in large parts of the world. Whereas many studies have focused on identifying the genetic susceptibility to obesity, we performed a GWAS on metabolically healthy thin individuals (lowest 6th percentile of the population-wide BMI spectrum) in a uniquely phenotyped Estonian cohort. We discovered anaplastic lymphoma kinase (ALK) as a candidate thinness gene. In Drosophila, RNAi mediated knockdown of Alk led to decreased triglyceride levels. In mice, genetic deletion of Alk resulted in thin animals with marked resistance to diet- and leptin-mutation-induced obesity. Mechanistically, we found that ALK expression in hypothalamic neurons controls energy expenditure via sympathetic control of adipose tissue lipolysis. Our genetic and mechanistic experiments identify ALK as a thinness gene, which is involved in the resistance to weight gain.


Asunto(s)
Quinasa de Linfoma Anaplásico/genética , Delgadez/genética , Tejido Adiposo/metabolismo , Adulto , Animales , Línea Celular , Estudios de Cohortes , Drosophila/genética , Estonia , Femenino , Humanos , Leptina/genética , Lipólisis/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/genética , Interferencia de ARN/fisiología , Adulto Joven
3.
Cell ; 158(4): 874-888, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-25126791

RESUMEN

Stem cells are highly abundant during early development but become a rare population in most adult organs. The molecular mechanisms causing stem cells to exit proliferation at a specific time are not well understood. Here, we show that changes in energy metabolism induced by the steroid hormone ecdysone and the Mediator initiate an irreversible cascade of events leading to cell-cycle exit in Drosophila neural stem cells. We show that the timely induction of oxidative phosphorylation and the mitochondrial respiratory chain are required in neuroblasts to uncouple the cell cycle from cell growth. This results in a progressive reduction in neuroblast cell size and ultimately in terminal differentiation. Brain tumor mutant neuroblasts fail to undergo this shrinkage process and continue to proliferate until adulthood. Our findings show that cell size control can be modified by systemic hormonal signaling and reveal a unique connection between metabolism and proliferation in stem cells.


Asunto(s)
Proliferación Celular , Drosophila melanogaster/citología , Ecdisona/metabolismo , Células-Madre Neurales/citología , Animales , Tamaño de la Célula , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Metabolismo Energético , Genoma de los Insectos , Complejo Mediador/metabolismo , Células-Madre Neurales/metabolismo
4.
Cell ; 158(1): 25-40, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24995976

RESUMEN

Obesity and diabetes affect more than half a billion individuals worldwide. Interestingly, the two conditions do not always coincide and the molecular determinants of "healthy" versus "unhealthy" obesity remain ill-defined. Chronic metabolic inflammation (metaflammation) is believed to be pivotal. Here, we tested a hypothesized anti-inflammatory role for heme oxygenase-1 (HO-1) in the development of metabolic disease. Surprisingly, in matched biopsies from "healthy" versus insulin-resistant obese subjects we find HO-1 to be among the strongest positive predictors of metabolic disease in humans. We find that hepatocyte and macrophage conditional HO-1 deletion in mice evokes resistance to diet-induced insulin resistance and inflammation, dramatically reducing secondary disease such as steatosis and liver toxicity. Intriguingly, cellular assays show that HO-1 defines prestimulation thresholds for inflammatory skewing and NF-κB amplification in macrophages and for insulin signaling in hepatocytes. These findings identify HO-1 inhibition as a potential therapeutic strategy for metabolic disease.


Asunto(s)
Hemo-Oxigenasa 1/metabolismo , Resistencia a la Insulina , Proteínas de la Membrana/metabolismo , Obesidad/complicaciones , Tejido Adiposo/metabolismo , Animales , Dieta Alta en Grasa , Hepatocitos/metabolismo , Humanos , Inflamación/metabolismo , Hígado/metabolismo , Macrófagos/metabolismo , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/fisiopatología , Ratones , Ratones Noqueados , Obesidad/fisiopatología , Especies Reactivas de Oxígeno/metabolismo
5.
Nat Immunol ; 17(12): 1361-1372, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27798618

RESUMEN

Hemolysis drives susceptibility to bacterial infections and predicts poor outcome from sepsis. These detrimental effects are commonly considered to be a consequence of heme-iron serving as a nutrient for bacteria. We employed a Gram-negative sepsis model and found that elevated heme levels impaired the control of bacterial proliferation independently of heme-iron acquisition by pathogens. Heme strongly inhibited phagocytosis and the migration of human and mouse phagocytes by disrupting actin cytoskeletal dynamics via activation of the GTP-binding Rho family protein Cdc42 by the guanine nucleotide exchange factor DOCK8. A chemical screening approach revealed that quinine effectively prevented heme effects on the cytoskeleton, restored phagocytosis and improved survival in sepsis. These mechanistic insights provide potential therapeutic targets for patients with sepsis or hemolytic disorders.


Asunto(s)
Infecciones por Bacterias Gramnegativas/inmunología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Hemo/metabolismo , Hemólisis/inmunología , Macrófagos/inmunología , Fagocitosis , Sepsis/inmunología , Animales , Antibacterianos/uso terapéutico , Citoesqueleto/metabolismo , Femenino , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Factores de Intercambio de Guanina Nucleótido/genética , Hemo-Oxigenasa 1/genética , Hemólisis/efectos de los fármacos , Humanos , Evasión Inmune , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fagocitosis/efectos de los fármacos , Quinina/uso terapéutico , Células RAW 264.7 , Sepsis/tratamiento farmacológico , Proteína de Unión al GTP cdc42/metabolismo
6.
Cell ; 151(2): 414-26, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-23063129

RESUMEN

Diabetes, obesity, and cancer affect upward of 15% of the world's population. Interestingly, all three diseases juxtapose dysregulated intracellular signaling with altered metabolic state. Exactly which genetic factors define stable metabolic set points in vivo remains poorly understood. Here, we show that hedgehog signaling rewires cellular metabolism. We identify a cilium-dependent Smo-Ca(2+)-Ampk axis that triggers rapid Warburg-like metabolic reprogramming within minutes of activation and is required for proper metabolic selectivity and flexibility. We show that Smo modulators can uncouple the Smo-Ampk axis from canonical signaling and identify cyclopamine as one of a new class of "selective partial agonists," capable of concomitant inhibition of canonical and activation of noncanonical hedgehog signaling. Intriguingly, activation of the Smo-Ampk axis in vivo drives robust insulin-independent glucose uptake in muscle and brown adipose tissue. These data identify multiple noncanonical endpoints that are pivotal for rational design of hedgehog modulators and provide a new therapeutic avenue for obesity and diabetes.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Glucólisis , Proteínas Hedgehog/metabolismo , Células Musculares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Quinasas de la Proteína-Quinasa Activada por el AMP , Adipocitos/metabolismo , Animales , Línea Celular , Células Cultivadas , Cilios/metabolismo , Diabetes Mellitus/metabolismo , Humanos , Ratones , Neoplasias/metabolismo , Obesidad/metabolismo , Proteínas Quinasas/metabolismo , Receptor Smoothened
7.
Blood ; 143(11): 1006-1017, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38142424

RESUMEN

ABSTRACT: Systemic mastocytosis (SM) is defined by the expansion and accumulation of neoplastic mast cells (MCs) in the bone marrow (BM) and extracutaneous organs. Most patients harbor a somatic KIT D816V mutation, which leads to growth factor-independent KIT activation and accumulation of MC. Tumor necrosis factor α (TNF) is a proapoptotic and inflammatory cytokine that has been implicated in the clonal selection of neoplastic cells. We found that KIT D816V increases the expression and secretion of TNF. TNF expression in neoplastic MCs is reduced by KIT-targeting drugs. Similarly, knockdown of KIT or targeting the downstream signaling cascade of MAPK and NF-κB signaling reduced TNF expression levels. TNF reduces colony formation in human BM cells, whereas KIT D816V+ cells are less susceptible to the cytokine, potentially contributing to clonal selection. In line, knockout of TNF in neoplastic MC prolonged survival and reduced myelosuppression in a murine xenotransplantation model. Mechanistic studies revealed that the relative resistance of KIT D816V+ cells to TNF is mediated by the apoptosis-regulator BIRC5 (survivin). Expression of BIRC5 in neoplastic MC was confirmed by immunohistochemistry of samples from patients with SM. TNF serum levels are significantly elevated in patients with SM and high TNF levels were identified as a biomarker associated with inferior survival. We here characterized TNF as a KIT D816V-dependent cytokine that promotes clonal dominance. We propose TNF and apoptosis-associated proteins as potential therapeutic targets in SM.


Asunto(s)
Mastocitosis Sistémica , Mastocitosis , Humanos , Animales , Ratones , Factor de Necrosis Tumoral alfa , Survivin/genética , Pronóstico , Mastocitosis Sistémica/diagnóstico , Mastocitosis Sistémica/genética , Citocinas
8.
Cell ; 140(1): 148-60, 2010 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-20074523

RESUMEN

Over 1 billion people are estimated to be overweight, placing them at risk for diabetes, cardiovascular disease, and cancer. We performed a systems-level genetic dissection of adiposity regulation using genome-wide RNAi screening in adult Drosophila. As a follow-up, the resulting approximately 500 candidate obesity genes were functionally classified using muscle-, oenocyte-, fat-body-, and neuronal-specific knockdown in vivo and revealed hedgehog signaling as the top-scoring fat-body-specific pathway. To extrapolate these findings into mammals, we generated fat-specific hedgehog-activation mutant mice. Intriguingly, these mice displayed near total loss of white, but not brown, fat compartments. Mechanistically, activation of hedgehog signaling irreversibly blocked differentiation of white adipocytes through direct, coordinate modulation of early adipogenic factors. These findings identify a role for hedgehog signaling in white/brown adipocyte determination and link in vivo RNAi-based scanning of the Drosophila genome to regulation of adipocyte cell fate in mammals.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas Hedgehog/metabolismo , Obesidad/genética , Adipocitos Marrones/metabolismo , Adipocitos Blancos/metabolismo , Adipogénesis , Animales , AMP Cíclico/metabolismo , Glucocorticoides/metabolismo , Humanos , Ratones , Ratones Noqueados , Células Musculares/metabolismo , Proteínas Represoras/genética
9.
Blood ; 137(2): 238-247, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-32777817

RESUMEN

Mastocytosis is a hematopoietic neoplasm characterized by expansion of KIT D816V-mutated clonal mast cells in various organs and severe or even life-threatening anaphylactic reactions. Recently, hereditary α-tryptasemia (HαT) has been described as a common genetic trait with increased copy numbers of the α-tryptase encoding gene, TPSAB1, and associated with an increased basal serum tryptase level and a risk of mast cell activation. The purpose of our study was to elucidate the clinical relevance of HαT in patients with mastocytosis. TPSAB1 germline copy number variants were assessed by digital polymerase chain reaction in 180 mastocytosis patients, 180 sex-matched control subjects, 720 patients with other myeloid neoplasms, and 61 additional mastocytosis patients of an independent validation cohort. α-Tryptase encoding TPSAB1 copy number gains, compatible with HαT, were identified in 17.2% of mastocytosis patients and 4.4% of the control population (P < .001). Patients with HαT exhibited higher tryptase levels than patients without HαT (median tryptase in HαT+ cases: 49.6 ng/mL vs HαT- cases: 34.5 ng/mL, P = .004) independent of the mast cell burden. Hymenoptera venom hypersensitivity reactions and severe cardiovascular mediator-related symptoms/anaphylaxis were by far more frequently observed in mastocytosis patients with HαT than in those without HαT. Results were confirmed in an independent validation cohort. The high prevalence of HαT in mastocytosis hints at a potential pathogenic role of germline α-tryptase encoding TPSAB1 copy number gains in disease evolution. Together, our data suggest that HαT is a novel emerging robust biomarker in mastocytosis that is useful for determining the individual patient´s risk of developing severe anaphylaxis.


Asunto(s)
Mastocitosis , Triptasas/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Variaciones en el Número de Copia de ADN , Femenino , Marcadores Genéticos , Humanos , Masculino , Mastocitosis/sangre , Mastocitosis/genética , Persona de Mediana Edad , Triptasas/sangre , Adulto Joven
10.
EMBO Rep ; 21(2): e47895, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31885181

RESUMEN

While intrinsic changes in aging hematopoietic stem cells (HSCs) are well characterized, it remains unclear how extrinsic factors affect HSC aging. Here, we demonstrate that cells in the niche-endothelial cells (ECs) and CXCL12-abundant reticular cells (CARs)-highly express the heme-degrading enzyme, heme oxygenase 1 (HO-1), but then decrease its expression with age. HO-1-deficient animals (HO-1-/- ) have altered numbers of ECs and CARs that produce less hematopoietic factors. HSCs co-cultured in vitro with HO-1-/- mesenchymal stromal cells expand, but have altered kinetic of growth and differentiation of derived colonies. HSCs from young HO-1-/- animals have reduced quiescence and regenerative potential. Young HO-1-/- HSCs exhibit features of premature exhaustion on the transcriptional and functional level. HO-1+/+ HSCs transplanted into HO-1-/- recipients exhaust their regenerative potential early and do not reconstitute secondary recipients. In turn, transplantation of HO-1-/- HSCs to the HO-1+/+ recipients recovers the regenerative potential of HO-1-/- HSCs and reverses their transcriptional alterations. Thus, HSC-extrinsic activity of HO-1 prevents HSCs from premature exhaustion and may restore the function of aged HSCs.


Asunto(s)
Hemo-Oxigenasa 1 , Células Madre Mesenquimatosas , Animales , Diferenciación Celular , Células Endoteliales , Células Madre Hematopoyéticas , Hemo-Oxigenasa 1/genética
11.
Haematologica ; 105(2): 366-374, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31018976

RESUMEN

A high allele burden of the KIT D816V mutation in peripheral blood or bone marrow aspirates indicates multi-lineage hematopoietic involvement and has been associated with an aggressive clinical course of systemic mastocytosis. Since mast cells are substantially underrepresented in these liquid specimens, their mutation burden likely underestimates the tumor burden of the disease. We used a novel previously validated digital polymerase chain reaction (PCR) method for KIT D816V analysis to systematically analyze the mutation burden in formalin-fixed, paraffin-embedded bone marrow tissue sections of 116 mastocytosis patients (91 with indolent and 25 with advanced systemic mastocytosis), and to evaluate for the first time the clinical value of the tissue mutation burden as a novel biomarker. The KIT D816V mutation burden in the tissue was significantly higher and correlated better with bone marrow mast cell infiltration (r=0.68 vs 0.48) and serum tryptase levels (r=0.68 vs 0.58) compared to that in liquid specimens. Furthermore, the KIT D816V tissue mutation burden was: (i) significantly higher in advanced than in indolent systemic mastocytosis (P=0.001); (ii) predicted survival of patients in multivariate analyses independently; and (iii) was significantly reduced after response to cytoreductive therapy. Finally, digital PCR was more sensitive in detecting KIT D816V in bone marrow sections of indolent systemic mastocytosis patients than melting curve analysis after peptide nucleic acid-mediated PCR clamping (97% vs 89%; P<0.05). In summary, digital PCR-based measurement of KIT D816V mutation burden in the tissue represents a novel biomarker with independent prognostic significance that can also be employed for monitoring disease progression and treatment response in systemic mastocytosis.


Asunto(s)
Mastocitosis Sistémica , Mastocitosis , Biomarcadores , Humanos , Mastocitos , Mastocitosis/diagnóstico , Mastocitosis/genética , Mastocitosis Sistémica/diagnóstico , Mastocitosis Sistémica/genética , Mutación , Proteínas Proto-Oncogénicas c-kit/genética
12.
Ann Hematol ; 99(11): 2599-2609, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32935190

RESUMEN

Methods to estimate bone marrow plasma cells (BMPC) basically include histopathology, cytomorphology, and flow cytometry. The present study compares the outcomes of these methods with special focus on the impact of BMPC-specific characteristics on their recovery by either method. Laboratory reports of diagnostic samples from 238 consecutive patients with suspected or known plasma cell disease were retrospectively analyzed. The median (IQR) proportion of BMPC was 30.0% (15.0-70.0%) by histological review (hBMPC), 7.0% (2.0-16.0%) by smear review (sBMPC), and 3.0% (0.8-10.0%) by flow cytometry (fBMPC). The disparity of results between core biopsy and aspirate smear was enhanced in case of poor quality of the smear, increased BM fiber content, higher grade cell atypia, expression of CD56 (all P < 0.0001), the number of cytogenetic aberrations (P = 0.0002), and abnormalities of the MYC gene (P = 0.0002). Conversely, expression of CD19 and a non-clonal plasma cell phenotype were associated with a lower difference between hBMPC and sBMPC (both P < 0.0001). The disparity between the percentages of sBMPC and fBMPC was associated with the quality of the smear (P = 0.0007) and expression of CD56 (P < 0.0001). Our results suggest that the recovery of BMPC in aspirate specimens not only is a matter of sampling quality but also depends on biological cell properties. Aspiration failure due to malignant type features of BMPC may lead to misclassification of plasma cell disorders and represent a bias for the detection of minimal residual disease after therapy.


Asunto(s)
Antígenos CD19/biosíntesis , Células de la Médula Ósea , Antígeno CD56/biosíntesis , Mieloma Múltiple , Proteínas de Neoplasias/biosíntesis , Células Plasmáticas , Adulto , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Femenino , Citometría de Flujo , Humanos , Inmunofenotipificación , Masculino , Persona de Mediana Edad , Mieloma Múltiple/clasificación , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Mieloma Múltiple/terapia , Neoplasia Residual , Células Plasmáticas/metabolismo , Células Plasmáticas/patología , Estudios Retrospectivos
13.
Clin Chem Lab Med ; 58(8): 1214-1222, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32084002

RESUMEN

Background Monitoring of molecular response (MR) using quantitative polymerase chain reaction (PCR) for BCR-ABL1 is a pivotal tool for guiding tyrosine kinase inhibitor therapy and the long-term follow-up of patients with chronic myeloid leukemia (CML). Results of MR monitoring are standardized according to the International Scale (IS), and specific time-dependent molecular milestones for definition of optimal response and treatment failure have been included in treatment recommendations. The common practice to use peripheral blood (PB) instead of bone marrow (BM) aspirate to monitor the MR monitoring in CML has been questioned. Some studies described differences between BCR-ABL1 levels in paired PB and BM specimens. Methods We examined 631 paired PB and BM samples from 283 CML patients in a retrospective single-center study using an IS normalized quantitative reverse transcription (qRT)-PCR assay for quantification of BCR-ABL1IS. Results A good overall concordance of BCR-ABL1IS results was found, a systematic tendency towards higher BCR-ABL1IS levels in PB was observed in samples of CML patients in a major MR. This difference was most pronounced in patients treated with imatinib for at least 1 year. Importantly, the difference resulted in a significantly lower rate of deep MR when BCR-ABL1IS was assessed in the PB compared to BM aspirates. Conclusions In summary, our data suggest that the classification of deep MR in patients with CML is more stringent in PB than in BM. Our study supports the current practice to primarily use PB for long-term molecular follow-up monitoring in CML.


Asunto(s)
Proteínas de Fusión bcr-abl/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Terapia Molecular Dirigida/métodos , Adulto , Anciano , Anciano de 80 o más Años , Biopsia , Médula Ósea/patología , Femenino , Proteínas de Fusión bcr-abl/sangre , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Leucemia Mielógena Crónica BCR-ABL Positiva/terapia , Masculino , Persona de Mediana Edad , ARN Mensajero/genética , Estudios Retrospectivos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Adulto Joven
14.
Gut ; 68(3): 533-546, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29374630

RESUMEN

OBJECTIVE: Liver injury impacts hepatic inflammation in part via Toll-like receptor (TLR) signalling. Triggering receptor expressed on myeloid cells 2 (TREM-2) modulates TLR4-mediated inflammation in bone marrow (BM)-derived macrophages but its function in liver injury is unknown. Here we hypothesised that the anti-inflammatory effects of TREM-2 on TLR signalling may limit hepatic injury. DESIGN: TREM-2 expression was analysed in livers of humans with various forms of liver injury compared with control individuals. Acute and chronic liver injury models were performed in wild type and Trem-2-/- mice. Primary liver cells from both genotypes of mice were isolated for in vitro experiments. RESULTS: TREM-2 was expressed on non-parenchymal hepatic cells and induced during liver injury in mice and man. Mice lacking TREM-2 exhibited heightened liver damage and inflammation during acute and repetitive carbon tetrachloride and acetaminophen (APAP) intoxication, the latter of which TREM-2 deficiency was remarkably associated with worsened survival. Liver damage in Trem-2-/- mice following chronic injury and APAP challenge was associated with elevated hepatic lipid peroxidation and macrophage content. BM transplantation experiments and cellular reactive oxygen species assays revealed effects of TREM-2 in the context of chronic injury depended on both immune and resident TREM-2 expression. Consistent with effects of TREM-2 on inflammation-associated injury, primary hepatic macrophages and hepatic stellate cells lacking TREM-2 exhibited augmented TLR4-driven proinflammatory responses. CONCLUSION: Our data indicate that by acting as a natural brake on inflammation during hepatocellular injury, TREM-2 is a critical regulator of diverse types of hepatotoxic injury.


Asunto(s)
Cirrosis Hepática/metabolismo , Hígado/metabolismo , Glicoproteínas de Membrana/fisiología , Receptores Inmunológicos/fisiología , Acetaminofén , Anciano , Animales , Tetracloruro de Carbono , Estudios de Casos y Controles , Femenino , Células Madre Hematopoyéticas/metabolismo , Hepatocitos/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Macrófagos del Hígado/metabolismo , Peroxidación de Lípido/fisiología , Cirrosis Hepática/etiología , Cirrosis Hepática/inmunología , Cirrosis Hepática Experimental/inmunología , Cirrosis Hepática Experimental/metabolismo , Masculino , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones Noqueados , Persona de Mediana Edad , Especies Reactivas de Oxígeno/metabolismo , Receptores Inmunológicos/deficiencia , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Receptor Toll-Like 4/fisiología , Regulación hacia Arriba/fisiología
15.
Cell Microbiol ; 18(10): 1374-89, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26866925

RESUMEN

Macrophages are central for the immune control of intracellular microbes. Heme oxygenase 1 (HO-1, hmox) is the first and rate limiting enzyme in the breakdown of heme originating from degraded senescent erythrocytes and heme-proteins, yielding equal amounts of iron, carbon monoxide and biliverdin. HO-1 is strongly up-regulated in macrophages in response to inflammatory signals, including bacterial endotoxin. In view of the essential role of iron for the growth and proliferation of intracellular bacteria along with known effects of the metal on innate immune function, we examined whether HO-1 plays a role in the control of infection with the intracellular bacterium Salmonella Typhimurium. We studied the course of infection in stably-transfected murine macrophages (RAW264.7) bearing a tetracycline-inducible plasmid producing hmox shRNA and in primary HO-1 knockout macrophages. While uptake of bacteria into macrophages was not affected, a significantly reduced survival of intracellular Salmonella was observed upon hmox knockdown or pharmacological hmox inhibition, which was independent of Nramp1 functionality. This could be traced to limitation of iron availability for intramacrophage bacteria along with enhanced stimulation of innate immune effector pathways, including the formation of reactive oxygen and nitrogen species and increased TNF-α expression. Mechanistically, these latter effects result from intracellular iron limitation with subsequent activation of NF-κB and further inos, tnfa and p47phox transcription along with reduced formation of the anti-inflammatory and radical scavenging molecules, CO and biliverdin as a consequence of HO-1 silencing. Taken together our data provide novel evidence that the infection-driven induction of HO-1 exerts detrimental effects in the early control of Salmonella infection, whereas hmox inhibition can favourably modulate anti-bacterial immune effector pathways of macrophages and promote bacterial elimination.


Asunto(s)
Hemo-Oxigenasa 1/fisiología , Proteínas de la Membrana/fisiología , Infecciones por Salmonella/enzimología , Salmonella typhimurium/inmunología , Animales , Inducción Enzimática , Expresión Génica/inmunología , Células HEK293 , Humanos , Inmunidad Innata , Hierro/metabolismo , Ratones , Viabilidad Microbiana , FN-kappa B/metabolismo , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Infecciones por Salmonella/microbiología
16.
Semin Cell Dev Biol ; 33: 81-92, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24862854

RESUMEN

Obesity and diabetes represent key healthcare challenges of our day, affecting upwards of one billion people worldwide. These individuals are at higher risk for cancer, stroke, blindness, heart and cardiovascular disease, and to date, have no effective long-term treatment options available. Recent and accumulating evidence has implicated the developmental morphogen Hedgehog and its downstream signalling in metabolic control. Generally thought to be quiescent in adults, Hedgehog is associated with several human cancers, and as such, has already emerged as a therapeutic target in oncology. Here, we attempt to give a comprehensive overview of the key signalling events associated with both canonical and non-canonical Hedgehog signalling, and highlight the increasingly complex regulatory modalities that appear to link Hedgehog and control metabolism. We highlight these key findings and discuss their impact for therapeutic development, cancer and metabolic disease.


Asunto(s)
Proteínas Hedgehog/fisiología , Transducción de Señal , Tejido Adiposo/metabolismo , Animales , Metabolismo Energético , Humanos , Hígado/metabolismo , Músculo Esquelético/metabolismo , Neoplasias/metabolismo , Páncreas/metabolismo
17.
Hepatology ; 61(2): 613-26, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25179284

RESUMEN

UNLABELLED: Growth hormone (GH) resistance has been associated with liver cirrhosis in humans but its contribution to the disease remains controversial. In order to elucidate whether GH resistance plays a causal role in the establishment and development of liver fibrosis, or rather represents a major consequence thereof, we challenged mice lacking the GH receptor gene (Ghr(-/-), a model for GH resistance) by crossing them with Mdr2 knockout mice (Mdr2(-/-)), a mouse model of inflammatory cholestasis and liver fibrosis. Ghr(-/-);Mdr2(-/-) mice showed elevated serum markers associated with liver damage and cholestasis, extensive bile duct proliferation, and increased collagen deposition relative to Mdr2(-/-) mice, thus suggesting a more severe liver fibrosis phenotype. Additionally, Ghr(-/-);Mdr2(-/-) mice had a pronounced down-regulation of hepatoprotective genes Hnf6, Egfr, and Igf-1, and significantly increased levels of reactive oxygen species (ROS) and apoptosis in hepatocytes, compared to control mice. Moreover, single knockout mice (Ghr(-/-)) fed with a diet containing 1% cholic acid displayed an increase in hepatocyte ROS production, hepatocyte apoptosis, and bile infarcts compared to their wild-type littermates, indicating that loss of Ghr renders hepatocytes more susceptible to toxic bile acid accumulation. Surprisingly, and despite their severe fibrotic phenotype, Ghr(-/-);Mdr2(-/-) mice displayed a significant decrease in tumor incidence compared to Mdr2(-/-) mice, indicating that loss of Ghr signaling may slow the progression from fibrosis/cirrhosis to cancer in the liver. CONCLUSION: GH resistance dramatically exacerbates liver fibrosis in a mouse model of inflammatory cholestasis, therefore suggesting that GH resistance plays a causal role in the disease and provides a novel target for the development of liver fibrosis treatments.


Asunto(s)
Hormona del Crecimiento/metabolismo , Cirrosis Hepática/etiología , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Animales , Ácidos y Sales Biliares/metabolismo , Colestasis/complicaciones , Hepatocitos/fisiología , Homeostasis , Cirrosis Hepática/metabolismo , Neoplasias Hepáticas Experimentales/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Somatotropina/genética , Regulación hacia Arriba , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
18.
Eur J Clin Invest ; 46(11): 911-919, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27600500

RESUMEN

BACKGROUND: Infiltration of white adipose tissue (WAT) by inflammatory cells in obesity is considered to be a key event in the development of insulin resistance. Recently, mast cells (MCs) have been identified as new players in the pathogenesis of obesity. We aimed to investigate the relationship between MCs and various inflammatory markers in serum and WAT and to determine the role of MCs in the aetiology of insulin resistance. MATERIALS AND METHODS: Gene expression was measured in WAT from 20 morbidly obese patients and 20 nonobese control subjects. Homoeostasis Model of Assessment-Insulin Resistance (HOMA-IR) was used to estimate insulin sensitivity. In addition, wild-type and mast cell-deficient mice were fed a high-fat or low-fat diet to study mast cell influence on inflammatory cell polarization in WAT and overall metabolic changes. RESULTS: WAT levels of MC-specific TPSb2 transcript were increased in obesity and significantly positively correlated with TNF, CCL2, CCL5 and CD68 gene expression levels in our study subjects after adjustment for sex, age and BMI. Accordingly, MC deficiency abrogated increase in expression of pro-inflammatory M1 macrophage marker genes in mouse WAT upon high-fat diet feeding. However, MCs accumulated in obese human WAT independent of insulin resistance and systemic changes in inflammatory mediators. CONCLUSIONS: Our results suggest that MCs contribute to the local pro-inflammatory state within WAT in obesity but do not play a primary role in causing insulin resistance.


Asunto(s)
Resistencia a la Insulina/fisiología , Mastocitos/fisiología , Obesidad Mórbida/patología , Tejido Adiposo Blanco/patología , Adulto , Animales , Biomarcadores/metabolismo , Estudios de Casos y Controles , Células Cultivadas , Citocinas/metabolismo , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Fenotipo , Delgadez/patología , Triptasas/metabolismo
19.
J Neurosci ; 34(30): 9917-26, 2014 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-25057194

RESUMEN

Hippocampal volume loss has been related to chronic stress as well as genetic factors. Although genetic and environmental variables affecting hippocampal volume have extensively been studied and related to mental illness, limited evidence is available with respect to G × E interactions on hippocampal volume. The present MRI study investigated interaction effects on hippocampal volume between three well-studied functional genetic variants (COMT Val158Met, BDNF Val66Met, 5-HTTLPR) associated with hippocampal volume and a measure of environmental adversity (life events questionnaire) in a large sample of healthy humans (n = 153). All three variants showed significant interactions with environmental adversity with respect to hippocampal volume. Observed effects were additive by nature and driven by both recent as well as early life events. A consecutive analysis of hippocampal subfields revealed a spatially distinct profile for each genetic variant suggesting a specific role of 5-HTTLPR for the subiculum, BDNF Val66Met for CA4/dentate gyrus, and COMT Val158Met for CA2/3 volume changes. The present study underscores the importance of G × E interactions as determinants of hippocampal volume, which is crucial for the neurobiological understanding of stress-related conditions, such as mood disorders or post-traumatic stress disorder (PTSD).


Asunto(s)
Interacción Gen-Ambiente , Estado de Salud , Hipocampo/fisiología , Acontecimientos que Cambian la Vida , Adolescente , Adulto , Femenino , Hipocampo/patología , Humanos , Masculino , Tamaño de los Órganos/fisiología , Adulto Joven
20.
Front Endocrinol (Lausanne) ; 15: 1419028, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39234504

RESUMEN

Purpose: The natural history in unselected cohorts of patients with pheochromocytoma/ paraganglioma (PPGL) followed for a period >10 years remains limited. We aimed to describe baseline characteristics and outcome of a large cohort and to identify predictors of shorter survival. Methods: This retrospective single-center study included 303 patients with newly diagnosed PPGL from 1968 to December 31, 2023, in 199 prospectively supplemented since July 2020. Mean follow-up was 11.4 (range 0.3-50) years, germline genetic analyses were available in 92.1%. The main outcome measures were overall (OAS), disease-specific (DSS), recurrence-free (RFS) survival and predictors of shorter survival evaluated in patients with metastases at first diagnosis (n=12), metastatic (n=24) and nonmetastatic (n=33) recurrences and without evidence of PPGL after first surgery (n=234). Results: Age at study begin was 49.4 ± 16.3 years. There were 72 (23.8%) deaths, 15 (5.0%), 29 (9.6%) and 28 (9.2%) due to PPGL, cardiovascular disease (CVD) and malignant or other diseases, respectively. Median OAS, DSS1 (tumor-related) and DSS2 (DSS1 and death caused by CVD) were 4.8, 5.9 and 5.2 years (patients with metastases at first diagnosis), 21.2, 21.2 and 19.9 years, and 38.0, undefined and 38.0 years (patients with metastatic and with nonmetastatic recurrences, respectively). Major adverse cardiovascular events (MACE) preceded the first diagnosis in 15% (n=44). Shorter DSS2 correlated with older age (P ≤ 0.001), male sex (P ≤ 0.02), MACE (P ≤ 0.01) and primary metastases (P<0.0001, also for DSS1). Conclusion: The clinical course of unselected patients with PPGL is rather benign. Survival rates remain high for decades, unless there are MACE before diagnosis or metastatic disease.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Enfermedades Cardiovasculares , Paraganglioma , Feocromocitoma , Humanos , Masculino , Feocromocitoma/mortalidad , Feocromocitoma/patología , Femenino , Persona de Mediana Edad , Neoplasias de las Glándulas Suprarrenales/mortalidad , Neoplasias de las Glándulas Suprarrenales/patología , Estudios de Seguimiento , Paraganglioma/mortalidad , Paraganglioma/patología , Paraganglioma/diagnóstico , Adulto , Estudios Retrospectivos , Enfermedades Cardiovasculares/mortalidad , Anciano , Metástasis de la Neoplasia , Tasa de Supervivencia , Adulto Joven , Pronóstico , Adolescente , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/mortalidad , Recurrencia Local de Neoplasia/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA