Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 173(3): 792-803.e19, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29656897

RESUMEN

Microscopy is a central method in life sciences. Many popular methods, such as antibody labeling, are used to add physical fluorescent labels to specific cellular constituents. However, these approaches have significant drawbacks, including inconsistency; limitations in the number of simultaneous labels because of spectral overlap; and necessary perturbations of the experiment, such as fixing the cells, to generate the measurement. Here, we show that a computational machine-learning approach, which we call "in silico labeling" (ISL), reliably predicts some fluorescent labels from transmitted-light images of unlabeled fixed or live biological samples. ISL predicts a range of labels, such as those for nuclei, cell type (e.g., neural), and cell state (e.g., cell death). Because prediction happens in silico, the method is consistent, is not limited by spectral overlap, and does not disturb the experiment. ISL generates biological measurements that would otherwise be problematic or impossible to acquire.


Asunto(s)
Colorantes Fluorescentes/química , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/métodos , Neuronas Motoras/citología , Algoritmos , Animales , Línea Celular Tumoral , Supervivencia Celular , Corteza Cerebral/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Aprendizaje Automático , Redes Neurales de la Computación , Neurociencias , Ratas , Programas Informáticos , Células Madre/citología
2.
Nature ; 542(7639): 115-118, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-28117445

RESUMEN

Skin cancer, the most common human malignancy, is primarily diagnosed visually, beginning with an initial clinical screening and followed potentially by dermoscopic analysis, a biopsy and histopathological examination. Automated classification of skin lesions using images is a challenging task owing to the fine-grained variability in the appearance of skin lesions. Deep convolutional neural networks (CNNs) show potential for general and highly variable tasks across many fine-grained object categories. Here we demonstrate classification of skin lesions using a single CNN, trained end-to-end from images directly, using only pixels and disease labels as inputs. We train a CNN using a dataset of 129,450 clinical images-two orders of magnitude larger than previous datasets-consisting of 2,032 different diseases. We test its performance against 21 board-certified dermatologists on biopsy-proven clinical images with two critical binary classification use cases: keratinocyte carcinomas versus benign seborrheic keratoses; and malignant melanomas versus benign nevi. The first case represents the identification of the most common cancers, the second represents the identification of the deadliest skin cancer. The CNN achieves performance on par with all tested experts across both tasks, demonstrating an artificial intelligence capable of classifying skin cancer with a level of competence comparable to dermatologists. Outfitted with deep neural networks, mobile devices can potentially extend the reach of dermatologists outside of the clinic. It is projected that 6.3 billion smartphone subscriptions will exist by the year 2021 (ref. 13) and can therefore potentially provide low-cost universal access to vital diagnostic care.


Asunto(s)
Dermatólogos/normas , Redes Neurales de la Computación , Neoplasias Cutáneas/clasificación , Neoplasias Cutáneas/diagnóstico , Automatización , Teléfono Celular/estadística & datos numéricos , Conjuntos de Datos como Asunto , Humanos , Queratinocitos/patología , Queratosis Seborreica/clasificación , Queratosis Seborreica/diagnóstico , Queratosis Seborreica/patología , Melanoma/clasificación , Melanoma/diagnóstico , Melanoma/patología , Nevo/clasificación , Nevo/diagnóstico , Nevo/patología , Fotograbar , Reproducibilidad de los Resultados , Neoplasias Cutáneas/patología
3.
Nature ; 546(7660): 686, 2017 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-28658222

RESUMEN

This corrects the article DOI: 10.1038/nature21056.

4.
JCO Precis Oncol ; 8: e2400145, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39447096

RESUMEN

PURPOSE: Current clinical risk stratification methods for localized prostate cancer are suboptimal, leading to over- and undertreatment. Recently, machine learning approaches using digital histopathology have shown superior prognostic ability in phase III trials. This study aims to develop a clinically usable risk grouping system using multimodal artificial intelligence (MMAI) models that outperform current National Comprehensive Cancer Network (NCCN) risk groups. MATERIALS AND METHODS: The cohort comprised 9,787 patients with localized prostate cancer from eight NRG Oncology randomized phase III trials, treated with radiation therapy, androgen deprivation therapy, and/or chemotherapy. Locked MMAI models, which used digital histopathology images and clinical data, were applied to each patient. Expert consensus on cut points defined low-, intermediate-, and high-risk groups on the basis of 10-year distant metastasis rates of 3% and 10%, respectively. The MMAI's reclassification and prognostic performance were compared with the three-tier NCCN risk groups. RESULTS: The median follow-up for censored patients was 7.9 years. According to NCCN risk categories, 30.4% of patients were low-risk, 25.5% intermediate-risk, and 44.1% high-risk. The MMAI risk classification identified 43.5% of patients as low-risk, 34.6% as intermediate-risk, and 21.8% as high-risk. MMAI reclassified 1,039 (42.0%) patients initially categorized by NCCN. Despite the MMAI low-risk group being larger than the NCCN low-risk group, the 10-year metastasis risks were comparable: 1.7% (95% CI, 0.2 to 3.2) for NCCN and 3.2% (95% CI, 1.7 to 4.7) for MMAI. The overall 10-year metastasis risk for NCCN high-risk patients was 16.6%, with MMAI further stratifying this group into low-, intermediate-, and high-risk, showing metastasis rates of 3.4%, 8.2%, and 26.3%, respectively. CONCLUSION: The MMAI risk grouping system expands the population of men identified as having low metastatic risk and accurately pinpoints a high-risk subset with elevated metastasis rates. This approach aims to prevent both overtreatment and undertreatment in localized prostate cancer, facilitating shared decision making.


Asunto(s)
Aprendizaje Profundo , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/patología , Medición de Riesgo/métodos , Anciano , Ensayos Clínicos Controlados Aleatorios como Asunto , Persona de Mediana Edad , Ensayos Clínicos Fase III como Asunto
5.
Eur Urol Oncol ; 7(5): 1024-1033, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38302323

RESUMEN

BACKGROUND: Accurate risk stratification is critical to guide management decisions in localized prostate cancer (PCa). Previously, we had developed and validated a multimodal artificial intelligence (MMAI) model generated from digital histopathology and clinical features. Here, we externally validate this model on men with high-risk or locally advanced PCa treated and followed as part of a phase 3 randomized control trial. OBJECTIVE: To externally validate the MMAI model on men with high-risk or locally advanced PCa treated and followed as part of a phase 3 randomized control trial. DESIGN, SETTING, AND PARTICIPANTS: Our validation cohort included 318 localized high-risk PCa patients from NRG/RTOG 9902 with available histopathology (337 [85%] of the 397 patients enrolled into the trial had available slides, of which 19 [5.6%] failed due to poor image quality). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Two previously locked prognostic MMAI models were validated for their intended endpoint: distant metastasis (DM) and PCa-specific mortality (PCSM). Individual clinical factors and the number of National Comprehensive Cancer Network (NCCN) high-risk features served as comparators. Subdistribution hazard ratio (sHR) was reported per standard deviation increase of the score with corresponding 95% confidence interval (CI) using Fine-Gray or Cox proportional hazards models. RESULTS AND LIMITATIONS: The DM and PCSM MMAI algorithms were significantly and independently associated with the risk of DM (sHR [95% CI] = 2.33 [1.60-3.38], p < 0.001) and PCSM, respectively (sHR [95% CI] = 3.54 [2.38-5.28], p < 0.001) when compared against other prognostic clinical factors and NCCN high-risk features. The lower 75% of patients by DM MMAI had estimated 5- and 10-yr DM rates of 4% and 7%, and the highest quartile had average 5- and 10-yr DM rates of 19% and 32%, respectively (p < 0.001). Similar results were observed for the PCSM MMAI algorithm. CONCLUSIONS: We externally validated the prognostic ability of MMAI models previously developed among men with localized high-risk disease. MMAI prognostic models further risk stratify beyond the clinical and pathological variables for DM and PCSM in a population of men already at a high risk for disease progression. This study provides evidence for consistent validation of our deep learning MMAI models to improve prognostication and enable more informed decision-making for patient care. PATIENT SUMMARY: This paper presents a novel approach using images from pathology slides along with clinical variables to validate artificial intelligence (computer-generated) prognostic models. When implemented, clinicians can offer a more personalized and tailored prognostic discussion for men with localized prostate cancer.


Asunto(s)
Inteligencia Artificial , Neoplasias de la Próstata , Anciano , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/terapia , Medición de Riesgo/métodos , Ensayos Clínicos Fase III como Asunto , Ensayos Clínicos Controlados Aleatorios como Asunto
6.
Res Sq ; 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37131691

RESUMEN

Background: Androgen deprivation therapy (ADT) with radiotherapy can benefit patients with localized prostate cancer. However, ADT can negatively impact quality of life and there remain no validated predictive models to guide its use. Methods: Digital pathology image and clinical data from pre-treatment prostate tissue from 5,727 patients enrolled on five phase III randomized trials treated with radiotherapy +/- ADT were used to develop and validate an artificial intelligence (AI)-derived predictive model to assess ADT benefit with the primary endpoint of distant metastasis. After the model was locked, validation was performed on NRG/RTOG 9408 (n = 1,594) that randomized men to radiotherapy +/- 4 months of ADT. Fine-Gray regression and restricted mean survival times were used to assess the interaction between treatment and predictive model and within predictive model positive and negative subgroup treatment effects. Results: In the NRG/RTOG 9408 validation cohort (14.9 years of median follow-up), ADT significantly improved time to distant metastasis (subdistribution hazard ratio [sHR] = 0.64, 95%CI [0.45-0.90], p = 0.01). The predictive model-treatment interaction was significant (p-interaction = 0.01). In predictive model positive patients (n = 543, 34%), ADT significantly reduced the risk of distant metastasis compared to radiotherapy alone (sHR = 0.34, 95%CI [0.19-0.63], p < 0.001). There were no significant differences between treatment arms in the predictive model negative subgroup (n = 1,051, 66%; sHR = 0.92, 95%CI [0.59-1.43], p = 0.71). Conclusions: Our data, derived and validated from completed randomized phase III trials, show that an AI-based predictive model was able to identify prostate cancer patients, with predominately intermediate-risk disease, who are likely to benefit from short-term ADT.

7.
NEJM Evid ; 2(8): EVIDoa2300023, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38320143

RESUMEN

BACKGROUND: Androgen deprivation therapy (ADT) with radiotherapy can benefit patients with localized prostate cancer. However, ADT can negatively impact quality of life, and there remain no validated predictive models to guide its use. METHODS: We used digital pathology images from pretreatment prostate tissue and clinical data from 5727 patients enrolled in five phase 3 randomized trials, in which treatment was radiotherapy with or without ADT, as our data source to develop and validate an artificial intelligence (AI)­derived predictive patient-specific model that would determine which patients would develop the primary end point of distant metastasis. The model used baseline data to provide a binary output that a given patient will likely benefit from ADT or not. After the model was locked, validation was performed using data from NRG Oncology/Radiation Therapy Oncology Group (RTOG) 9408 (n=1594), a trial that randomly assigned men to radiotherapy plus or minus 4 months of ADT. Fine­Gray regression and restricted mean survival times were used to assess the interaction between treatment and the predictive model and within predictive model­positive, i.e., benefited from ADT, and ­negative subgroup treatment effects. RESULTS: Overall, in the NRG/RTOG 9408 validation cohort (14.9 years of median follow-up), ADT significantly improved time to distant metastasis. Of these enrolled patients, 543 (34%) were model positive, and ADT significantly reduced the risk of distant metastasis compared with radiotherapy alone. Of 1051 patients who were model negative, ADT did not provide benefit. CONCLUSIONS: Our AI-based predictive model was able to identify patients with a predominantly intermediate risk for prostate cancer likely to benefit from short-term ADT. (Supported by a grant [U10CA180822] from NRG Oncology Statistical and Data Management Center, a grant [UG1CA189867] from NCI Community Oncology Research Program, a grant [U10CA180868] from NRG Oncology Operations, and a grant [U24CA196067] from NRG Specimen Bank from the National Cancer Institute and by Artera, Inc. ClinicalTrials.gov numbers NCT00767286, NCT00002597, NCT00769548, NCT00005044, and NCT00033631.)


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Antagonistas de Andrógenos , Antígeno Prostático Específico/uso terapéutico , Inteligencia Artificial , Hormonas/uso terapéutico
8.
NPJ Digit Med ; 5(1): 71, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35676445

RESUMEN

Prostate cancer is the most frequent cancer in men and a leading cause of cancer death. Determining a patient's optimal therapy is a challenge, where oncologists must select a therapy with the highest likelihood of success and the lowest likelihood of toxicity. International standards for prognostication rely on non-specific and semi-quantitative tools, commonly leading to over- and under-treatment. Tissue-based molecular biomarkers have attempted to address this, but most have limited validation in prospective randomized trials and expensive processing costs, posing substantial barriers to widespread adoption. There remains a significant need for accurate and scalable tools to support therapy personalization. Here we demonstrate prostate cancer therapy personalization by predicting long-term, clinically relevant outcomes using a multimodal deep learning architecture and train models using clinical data and digital histopathology from prostate biopsies. We train and validate models using five phase III randomized trials conducted across hundreds of clinical centers. Histopathological data was available for 5654 of 7764 randomized patients (71%) with a median follow-up of 11.4 years. Compared to the most common risk-stratification tool-risk groups developed by the National Cancer Center Network (NCCN)-our models have superior discriminatory performance across all endpoints, ranging from 9.2% to 14.6% relative improvement in a held-out validation set. This artificial intelligence-based tool improves prognostication over standard tools and allows oncologists to computationally predict the likeliest outcomes of specific patients to determine optimal treatment. Outfitted with digital scanners and internet access, any clinic could offer such capabilities, enabling global access to therapy personalization.

9.
NPJ Digit Med ; 4(1): 68, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846532

RESUMEN

The COVID-19 global pandemic has resulted in international efforts to understand, track, and mitigate the disease, yielding a significant corpus of COVID-19 and SARS-CoV-2-related publications across scientific disciplines. Throughout 2020, over 400,000 coronavirus-related publications have been collected through the COVID-19 Open Research Dataset. Here, we present CO-Search, a semantic, multi-stage, search engine designed to handle complex queries over the COVID-19 literature, potentially aiding overburdened health workers in finding scientific answers and avoiding misinformation during a time of crisis. CO-Search is built from two sequential parts: a hybrid semantic-keyword retriever, which takes an input query and returns a sorted list of the 1000 most relevant documents, and a re-ranker, which further orders them by relevance. The retriever is composed of a deep learning model (Siamese-BERT) that encodes query-level meaning, along with two keyword-based models (BM25, TF-IDF) that emphasize the most important words of a query. The re-ranker assigns a relevance score to each document, computed from the outputs of (1) a question-answering module which gauges how much each document answers the query, and (2) an abstractive summarization module which determines how well a query matches a generated summary of the document. To account for the relatively limited dataset, we develop a text augmentation technique which splits the documents into pairs of paragraphs and the citations contained in them, creating millions of (citation title, paragraph) tuples for training the retriever. We evaluate our system ( http://einstein.ai/covid ) on the data of the TREC-COVID information retrieval challenge, obtaining strong performance across multiple key information retrieval metrics.

10.
J Invest Dermatol ; 141(9): 2109-2111, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33766511

RESUMEN

Artificial intelligence (AI)-based applications have the potential to improve the quality and efficiency of patient care in dermatology. Unique challenges in the development and validation of these technologies may limit their generalizability and real-world applicability. Before the widespread adoption of AI interventions, randomized trials should be conducted to evaluate their efficacy, safety, and cost effectiveness in clinical settings. The recent Standard Protocol Items: Recommendations for Interventional Trials-AI extension and Consolidated Standards of Reporting Trials-AI extension guidelines provide recommendations for reporting the methods and results of trials involving AI interventions. High-quality trials will provide gold standard evidence to support the adoption of AI for the benefit of patient care.


Asunto(s)
Inteligencia Artificial/tendencias , Dermatología , Conjuntos de Datos como Asunto , Práctica Clínica Basada en la Evidencia , Humanos , Guías de Práctica Clínica como Asunto , Ensayos Clínicos Controlados Aleatorios como Asunto , Proyectos de Investigación/normas
11.
NPJ Digit Med ; 4(1): 5, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420381

RESUMEN

A decade of unprecedented progress in artificial intelligence (AI) has demonstrated the potential for many fields-including medicine-to benefit from the insights that AI techniques can extract from data. Here we survey recent progress in the development of modern computer vision techniques-powered by deep learning-for medical applications, focusing on medical imaging, medical video, and clinical deployment. We start by briefly summarizing a decade of progress in convolutional neural networks, including the vision tasks they enable, in the context of healthcare. Next, we discuss several example medical imaging applications that stand to benefit-including cardiology, pathology, dermatology, ophthalmology-and propose new avenues for continued work. We then expand into general medical video, highlighting ways in which clinical workflows can integrate computer vision to enhance care. Finally, we discuss the challenges and hurdles required for real-world clinical deployment of these technologies.

12.
NPJ Digit Med ; 4(1): 145, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620993

RESUMEN

Biology has become a prime area for the deployment of deep learning and artificial intelligence (AI), enabled largely by the massive data sets that the field can generate. Key to most AI tasks is the availability of a sufficiently large, labeled data set with which to train AI models. In the context of microscopy, it is easy to generate image data sets containing millions of cells and structures. However, it is challenging to obtain large-scale high-quality annotations for AI models. Here, we present HALS (Human-Augmenting Labeling System), a human-in-the-loop data labeling AI, which begins uninitialized and learns annotations from a human, in real-time. Using a multi-part AI composed of three deep learning models, HALS learns from just a few examples and immediately decreases the workload of the annotator, while increasing the quality of their annotations. Using a highly repetitive use-case-annotating cell types-and running experiments with seven pathologists-experts at the microscopic analysis of biological specimens-we demonstrate a manual work reduction of 90.60%, and an average data-quality boost of 4.34%, measured across four use-cases and two tissue stain types.

13.
Nat Commun ; 11(1): 5727, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33199723

RESUMEN

For newly diagnosed breast cancer, estrogen receptor status (ERS) is a key molecular marker used for prognosis and treatment decisions. During clinical management, ERS is determined by pathologists from immunohistochemistry (IHC) staining of biopsied tissue for the targeted receptor, which highlights the presence of cellular surface antigens. This is an expensive, time-consuming process which introduces discordance in results due to variability in IHC preparation and pathologist subjectivity. In contrast, hematoxylin and eosin (H&E) staining-which highlights cellular morphology-is quick, less expensive, and less variable in preparation. Here we show that machine learning can determine molecular marker status, as assessed by hormone receptors, directly from cellular morphology. We develop a multiple instance learning-based deep neural network that determines ERS from H&E-stained whole slide images (WSI). Our algorithm-trained strictly with WSI-level annotations-is accurate on a varied, multi-country dataset of 3,474 patients, achieving an area under the curve (AUC) of 0.92 for sensitivity and specificity. Our approach has the potential to augment clinicians' capabilities in cancer prognosis and theragnosis by harnessing biological signals imperceptible to the human eye.


Asunto(s)
Neoplasias de la Mama/patología , Aprendizaje Profundo , Receptores de Esteroides/metabolismo , Coloración y Etiquetado , Área Bajo la Curva , Femenino , Humanos , Clasificación del Tumor
14.
NPJ Digit Med ; 3: 134, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33083569

RESUMEN

Since its inception in 2017, npj Digital Medicine has attracted a disproportionate number of manuscripts reporting on uses of artificial intelligence. This field has matured rapidly in the past several years. There was initial fascination with the algorithms themselves (machine learning, deep learning, convoluted neural networks) and the use of these algorithms to make predictions that often surpassed prevailing benchmarks. As the discipline has matured, individuals have called attention to aberrancies in the output of these algorithms. In particular, criticisms have been widely circulated that algorithmically developed models may have limited generalizability due to overfitting to the training data and may systematically perpetuate various forms of biases inherent in the training data, including race, gender, age, and health state or fitness level (Challen et al. BMJ Qual. Saf. 28:231-237, 2019; O'neil. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy, Broadway Book, 2016). Given our interest in publishing the highest quality papers and the growing volume of submissions using AI algorithms, we offer a list of criteria that authors should consider before submitting papers to npj Digital Medicine.

16.
Nat Biomed Eng ; 4(6): 624-635, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32251391

RESUMEN

Technologies for the longitudinal monitoring of a person's health are poorly integrated with clinical workflows, and have rarely produced actionable biometric data for healthcare providers. Here, we describe easily deployable hardware and software for the long-term analysis of a user's excreta through data collection and models of human health. The 'smart' toilet, which is self-contained and operates autonomously by leveraging pressure and motion sensors, analyses the user's urine using a standard-of-care colorimetric assay that traces red-green-blue values from images of urinalysis strips, calculates the flow rate and volume of urine using computer vision as a uroflowmeter, and classifies stool according to the Bristol stool form scale using deep learning, with performance that is comparable to the performance of trained medical personnel. Each user of the toilet is identified through their fingerprint and the distinctive features of their anoderm, and the data are securely stored and analysed in an encrypted cloud server. The toilet may find uses in the screening, diagnosis and longitudinal monitoring of specific patient populations.


Asunto(s)
Aparatos Sanitarios , Diseño de Equipo , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Adulto , Aprendizaje Profundo , Heces/química , Femenino , Humanos , Masculino , Procesamiento de Señales Asistido por Computador , Programas Informáticos , Orina/química , Interfaz Usuario-Computador
17.
J Invest Dermatol ; 139(1): 25-30, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30482597

RESUMEN

Innovative technologies, including novel communication and imaging tools, are affecting dermatology in profound ways. A burning question for the field is whether we will retrospectively react to innovations or proactively leverage them to benefit precision medicine. Early detection of melanoma is a dermatologic area particularly poised to benefit from such innovation. This session of the Montagna Symposium on Biology of Skin focused on provocative, potentially disruptive advances, including crowdsourcing of patient advocacy efforts, rigorous experimental design of public education campaigns, research with mobile phone applications, advanced skin imaging technologies, and the emergence of artificial intelligence as a diagnostic supplement.


Asunto(s)
Dermoscopía/métodos , Detección Precoz del Cáncer/estadística & datos numéricos , Melanoma/diagnóstico , Microscopía Confocal/métodos , Neoplasias Cutáneas/diagnóstico , Piel/patología , Macrodatos , Humanos
18.
Nat Med ; 25(1): 24-29, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30617335

RESUMEN

Here we present deep-learning techniques for healthcare, centering our discussion on deep learning in computer vision, natural language processing, reinforcement learning, and generalized methods. We describe how these computational techniques can impact a few key areas of medicine and explore how to build end-to-end systems. Our discussion of computer vision focuses largely on medical imaging, and we describe the application of natural language processing to domains such as electronic health record data. Similarly, reinforcement learning is discussed in the context of robotic-assisted surgery, and generalized deep-learning methods for genomics are reviewed.


Asunto(s)
Aprendizaje Profundo , Atención a la Salud , Diagnóstico por Imagen , Registros Electrónicos de Salud , Humanos , Procesamiento de Lenguaje Natural
19.
Rev. panam. salud pública ; 48: e13, 2024. tab, graf
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1536672

RESUMEN

resumen está disponible en el texto completo


ABSTRACT The CONSORT 2010 statement provides minimum guidelines for reporting randomized trials. Its widespread use has been instrumental in ensuring transparency in the evaluation of new interventions. More recently, there has been a growing recognition that interventions involving artificial intelligence (AI) need to undergo rigorous, prospective evaluation to demonstrate impact on health outcomes. The CONSORT-AI (Consolidated Standards of Reporting Trials-Artificial Intelligence) extension is a new reporting guideline for clinical trials evaluating interventions with an AI component. It was developed in parallel with its companion statement for clinical trial protocols: SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials-Artificial Intelligence). Both guidelines were developed through a staged consensus process involving literature review and expert consultation to generate 29 candidate items, which were assessed by an international multi-stakeholder group in a two-stage Delphi survey (103 stakeholders), agreed upon in a two-day consensus meeting (31 stakeholders) and refined through a checklist pilot (34 participants). The CONSORT-AI extension includes 14 new items that were considered sufficiently important for AI interventions that they should be routinely reported in addition to the core CONSORT 2010 items. CONSORT-AI recommends that investigators provide clear descriptions of the AI intervention, including instructions and skills required for use, the setting in which the AI intervention is integrated, the handling of inputs and outputs of the AI intervention, the human-AI interaction and provision of an analysis of error cases. CONSORT-AI will help promote transparency and completeness in reporting clinical trials for AI interventions. It will assist editors and peer reviewers, as well as the general readership, to understand, interpret and critically appraise the quality of clinical trial design and risk of bias in the reported outcomes.


RESUMO A declaração CONSORT 2010 apresenta diretrizes mínimas para relatórios de ensaios clínicos randomizados. Seu uso generalizado tem sido fundamental para garantir a transparência na avaliação de novas intervenções. Recentemente, tem-se reconhecido cada vez mais que intervenções que incluem inteligência artificial (IA) precisam ser submetidas a uma avaliação rigorosa e prospectiva para demonstrar seus impactos sobre os resultados de saúde. A extensão CONSORT-AI (Consolidated Standards of Reporting Trials - Artificial Intelligence) é uma nova diretriz para relatórios de ensaios clínicos que avaliam intervenções com um componente de IA. Ela foi desenvolvida em paralelo à sua declaração complementar para protocolos de ensaios clínicos, a SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials - Artificial Intelligence). Ambas as diretrizes foram desenvolvidas por meio de um processo de consenso em etapas que incluiu revisão da literatura e consultas a especialistas para gerar 29 itens candidatos. Foram feitas consultas sobre esses itens a um grupo internacional composto por 103 interessados diretos, que participaram de uma pesquisa Delphi em duas etapas. Chegou-se a um acordo sobre os itens em uma reunião de consenso que incluiu 31 interessados diretos, e os itens foram refinados por meio de uma lista de verificação piloto que envolveu 34 participantes. A extensão CONSORT-AI inclui 14 itens novos que, devido à sua importância para as intervenções de IA, devem ser informados rotineiramente juntamente com os itens básicos da CONSORT 2010. A CONSORT-AI preconiza que os pesquisadores descrevam claramente a intervenção de IA, incluindo instruções e as habilidades necessárias para seu uso, o contexto no qual a intervenção de IA está inserida, considerações sobre o manuseio dos dados de entrada e saída da intervenção de IA, a interação humano-IA e uma análise dos casos de erro. A CONSORT-AI ajudará a promover a transparência e a integralidade nos relatórios de ensaios clínicos com intervenções que utilizam IA. Seu uso ajudará editores e revisores, bem como leitores em geral, a entender, interpretar e avaliar criticamente a qualidade do desenho do ensaio clínico e o risco de viés nos resultados relatados.

20.
Rev. panam. salud pública ; 48: e12, 2024. tab, graf
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1536674

RESUMEN

resumen está disponible en el texto completo


ABSTRACT The SPIRIT 2013 statement aims to improve the completeness of clinical trial protocol reporting by providing evidence-based recommendations for the minimum set of items to be addressed. This guidance has been instrumental in promoting transparent evaluation of new interventions. More recently, there has been a growing recognition that interventions involving artificial intelligence (AI) need to undergo rigorous, prospective evaluation to demonstrate their impact on health outcomes. The SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials-Artificial Intelligence) extension is a new reporting guideline for clinical trial protocols evaluating interventions with an AI component. It was developed in parallel with its companion statement for trial reports: CONSORT-AI (Consolidated Standards of Reporting Trials-Artificial Intelligence). Both guidelines were developed through a staged consensus process involving literature review and expert consultation to generate 26 candidate items, which were consulted upon by an international multi-stakeholder group in a two-stage Delphi survey (103 stakeholders), agreed upon in a consensus meeting (31 stakeholders) and refined through a checklist pilot (34 participants). The SPIRIT-AI extension includes 15 new items that were considered sufficiently important for clinical trial protocols of AI interventions. These new items should be routinely reported in addition to the core SPIRIT 2013 items. SPIRIT-AI recommends that investigators provide clear descriptions of the AI intervention, including instructions and skills required for use, the setting in which the AI intervention will be integrated, considerations for the handling of input and output data, the human-AI interaction and analysis of error cases. SPIRIT-AI will help promote transparency and completeness for clinical trial protocols for AI interventions. Its use will assist editors and peer reviewers, as well as the general readership, to understand, interpret and critically appraise the design and risk of bias for a planned clinical trial.


RESUMO A declaração SPIRIT 2013 tem como objetivo melhorar a integralidade dos relatórios dos protocolos de ensaios clínicos, fornecendo recomendações baseadas em evidências para o conjunto mínimo de itens que devem ser abordados. Essas orientações têm sido fundamentais para promover uma avaliação transparente de novas intervenções. Recentemente, tem-se reconhecido cada vez mais que intervenções que incluem inteligência artificial (IA) precisam ser submetidas a uma avaliação rigorosa e prospectiva para demonstrar seus impactos sobre os resultados de saúde. A extensão SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials - Artificial Intelligence) é uma nova diretriz de relatório para protocolos de ensaios clínicos que avaliam intervenções com um componente de IA. Essa diretriz foi desenvolvida em paralelo à sua declaração complementar para relatórios de ensaios clínicos, CONSORT-AI (Consolidated Standards of Reporting Trials - Artificial Intelligence). Ambas as diretrizes foram desenvolvidas por meio de um processo de consenso em etapas que incluiu revisão da literatura e consultas a especialistas para gerar 26 itens candidatos. Foram feitas consultas sobre esses itens a um grupo internacional composto por 103 interessados diretos, que participaram de uma pesquisa Delphi em duas etapas. Chegou-se a um acordo sobre os itens em uma reunião de consenso que incluiu 31 interessados diretos, e os itens foram refinados por meio de uma lista de verificação piloto que envolveu 34 participantes. A extensão SPIRIT-AI inclui 15 itens novos que foram considerados suficientemente importantes para os protocolos de ensaios clínicos com intervenções que utilizam IA. Esses itens novos devem constar dos relatórios de rotina, juntamente com os itens básicos da SPIRIT 2013. A SPIRIT-AI preconiza que os pesquisadores descrevam claramente a intervenção de IA, incluindo instruções e as habilidades necessárias para seu uso, o contexto no qual a intervenção de IA será integrada, considerações sobre o manuseio dos dados de entrada e saída, a interação humano-IA e a análise de casos de erro. A SPIRIT-AI ajudará a promover a transparência e a integralidade nos protocolos de ensaios clínicos com intervenções que utilizam IA. Seu uso ajudará editores e revisores, bem como leitores em geral, a entender, interpretar e avaliar criticamente o delineamento e o risco de viés de um futuro estudo clínico.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA