Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Cell Dev Biol ; 34: 1-28, 2018 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-30059630

RESUMEN

Intermediate filaments (IFs) are one of the three major elements of the cytoskeleton. Their stability, intrinsic mechanical properties, and cell type-specific expression patterns distinguish them from actin and microtubules. By providing mechanical support, IFs protect cells from external forces and participate in cell adhesion and tissue integrity. IFs form an extensive and elaborate network that connects the cell cortex to intracellular organelles. They act as a molecular scaffold that controls intracellular organization. However, IFs have been revealed as much more than just rigid structures. Their dynamics is regulated by multiple signaling cascades and appears to contribute to signaling events in response to cell stress and to dynamic cellular functions such as mitosis, apoptosis, and migration.


Asunto(s)
Biología Celular/tendencias , Citoplasma/genética , Filamentos Intermedios/genética , Microtúbulos/genética , Actinas/química , Actinas/genética , Citoplasma/química , Citoesqueleto/química , Citoesqueleto/genética , Proteína Ácida Fibrilar de la Glía/genética , Humanos , Filamentos Intermedios/química , Microtúbulos/química , Mitosis/genética , Transducción de Señal/genética
2.
Nat Rev Mol Cell Biol ; 17(2): 97-109, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26726037

RESUMEN

Collective cell migration has a key role during morphogenesis and during wound healing and tissue renewal in the adult, and it is involved in cancer spreading. In addition to displaying a coordinated migratory behaviour, collectively migrating cells move more efficiently than if they migrated separately, which indicates that a cellular interplay occurs during collective cell migration. In recent years, evidence has accumulated confirming the importance of such intercellular communication and exploring the molecular mechanisms involved. These mechanisms are based both on direct physical interactions, which coordinate the cellular responses, and on the collective cell behaviour that generates an optimal environment for efficient directed migration. The recent studies have described how leader cells at the front of cell groups drive migration and have highlighted the importance of follower cells and cell-cell communication, both between followers and between follower and leader cells, to improve the efficiency of collective movement.


Asunto(s)
Comunicación Celular , Movimiento Celular , Proteínas de la Matriz Extracelular/genética , Morfogénesis/genética , Invasividad Neoplásica/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Uniones Adherentes/metabolismo , Uniones Adherentes/ultraestructura , Animales , Polaridad Celular , Proteínas de la Matriz Extracelular/metabolismo , Regulación de la Expresión Génica , Humanos , Transducción de Señal , Cicatrización de Heridas/genética , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
3.
Annu Rev Cell Dev Biol ; 29: 471-99, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23875648

RESUMEN

Migration is a polarized cellular process that opposes a protrusive front edge to a retracting trailing edge. From the front to the rear, actin-mediated forces sequentially promote cell protrusion, adhesion, contraction, and retraction. Over the past decade, microtubules have revealed their pivotal role in cell migration. Through their roles in cell mechanics, intracellular trafficking, and signaling, microtubules participate in all essential events leading to cell migration. The front-rear polarization of microtubule functions relies on the asymmetric regulation of microtubule dynamics and stability; the asymmetric distribution of microtubule-associated protein complexes; and finally, the orientation of the microtubule network along the axis of migration. Microtubule network polarity controls the establishment and maintenance of the spatial and temporal coordination of migration events and is therefore the key to persistent directed migration. This review summarizes our current understanding of the functions of microtubules in persistent cell migration and of the migration-associated signals that promote microtubule network polarization.


Asunto(s)
Movimiento Celular , Animales , Adhesión Celular , Polaridad Celular , Citoesqueleto/metabolismo , Humanos , Microtúbulos/metabolismo
4.
Mol Cell ; 69(4): 594-609.e8, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29452639

RESUMEN

Accumulating evidence indicates that the MDM2 oncoprotein promotes tumorigenesis beyond its canonical negative effects on the p53 tumor suppressor, but these p53-independent functions remain poorly understood. Here, we show that a fraction of endogenous MDM2 is actively imported in mitochondria to control respiration and mitochondrial dynamics independently of p53. Mitochondrial MDM2 represses the transcription of NADH-dehydrogenase 6 (MT-ND6) in vitro and in vivo, impinging on respiratory complex I activity and enhancing mitochondrial ROS production. Recruitment of MDM2 to mitochondria increases during oxidative stress and hypoxia. Accordingly, mice lacking MDM2 in skeletal muscles exhibit higher MT-ND6 levels, enhanced complex I activity, and increased muscular endurance in mild hypoxic conditions. Furthermore, increased mitochondrial MDM2 levels enhance the migratory and invasive properties of cancer cells. Collectively, these data uncover a previously unsuspected function of the MDM2 oncoprotein in mitochondria that play critical roles in skeletal muscle physiology and may contribute to tumor progression.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Transformación Celular Neoplásica/patología , Complejo I de Transporte de Electrón/metabolismo , Regulación Neoplásica de la Expresión Génica , Mitocondrias/patología , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Movimiento Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Complejo I de Transporte de Electrón/genética , Genoma Mitocondrial , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Invasividad Neoplásica , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-mdm2/genética , Transducción de Señal , Transcripción Genética , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética , Ensayos Antitumor por Modelo de Xenoinjerto
5.
J Biol Chem ; 300(1): 105575, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38110034

RESUMEN

The carboxy-terminal tail of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) envelope protein (E) contains a PDZ-binding motif (PBM) which is crucial for coronavirus pathogenicity. During SARS-CoV-2 infection, the viral E protein is expressed within the Golgi apparatus membrane of host cells with its PBM facing the cytoplasm. In this work, we study the molecular mechanisms controlling the presentation of the PBM to host PDZ (PSD-95/Dlg/ZO-1) domain-containing proteins. We show that at the level of the Golgi apparatus, the PDZ-binding motif of the E protein is not detected by E C-terminal specific antibodies nor by the PDZ domain-containing protein-binding partner. Four alanine substitutions upstream of the PBM in the central region of the E protein tail is sufficient to generate immunodetection by anti-E antibodies and trigger robust recruitment of the PDZ domain-containing protein into the Golgi organelle. Overall, this work suggests that the presentation of the PBM to the cytoplasm is under conformational regulation mediated by the central region of the E protein tail and that PBM presentation probably does not occur at the surface of Golgi cisternae but likely at post-Golgi stages of the viral cycle.


Asunto(s)
Proteínas de la Envoltura de Coronavirus , Citoplasma , SARS-CoV-2 , Humanos , Secuencias de Aminoácidos , Proteínas de la Envoltura de Coronavirus/química , Proteínas de la Envoltura de Coronavirus/metabolismo , COVID-19/patología , COVID-19/virología , Citoplasma/metabolismo , Citoplasma/virología , Aparato de Golgi/química , Aparato de Golgi/metabolismo , Guanilato-Quinasas/metabolismo , Dominios PDZ , Unión Proteica , Conformación Proteica , Transporte de Proteínas , SARS-CoV-2/química , SARS-CoV-2/metabolismo
6.
J Cell Sci ; 136(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36594661

RESUMEN

Bacterial infection is a major threat to human health, with infections resulting in considerable mortality, urging the need for a more profound understanding of bacteria-host interactions. During infection of cells, host cytoskeletal networks constantly interact with bacteria and are integral to their uptake. Vimentin, an intermediate filament protein, is one such cytoskeletal component that interacts with bacteria during infection. Although vimentin is predominantly present in the cytoplasm, it also appears in a secreted form or at the surface of multiple cell types, including epithelial cells, endothelial cells, macrophages and fibroblasts. As a cytoplasmic protein, vimentin participates in bacterial transportation and the consequential immune-inflammatory responses. When expressed on the cell surface, vimentin can be both pro- and anti-bacterial, favoring bacterial invasion in some contexts, but also limiting bacterial survival in others. Vimentin is also secreted and located extracellularly, where it is primarily involved in bacterial-induced inflammation regulation. Reciprocally, bacteria can also manipulate the fate of vimentin in host cells. Given that vimentin is not only involved in bacterial infection, but also the associated life-threatening inflammation, the use of vimentin-targeted drugs might offer a synergistic advantage. In this Review, we recapitulate the abundant evidence on vimentin and its dynamic changes in bacterial infection and speculate on its potential as an anti-bacterial therapeutic target.


Asunto(s)
Infecciones Bacterianas , Filamentos Intermedios , Humanos , Filamentos Intermedios/metabolismo , Vimentina/metabolismo , Células Endoteliales/metabolismo , Inflamación
7.
Nat Mater ; 21(3): 366-377, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34663953

RESUMEN

Mechanotransduction is a process by which cells sense the mechanical properties of their surrounding environment and adapt accordingly to perform cellular functions such as adhesion, migration and differentiation. Integrin-mediated focal adhesions are major sites of mechanotransduction and their connection with the actomyosin network is crucial for mechanosensing as well as for the generation and transmission of forces onto the substrate. Despite having emerged as major regulators of cell adhesion and migration, the contribution of microtubules to mechanotransduction still remains elusive. Here, we show that talin- and actomyosin-dependent mechanosensing of substrate rigidity controls microtubule acetylation (a tubulin post-translational modification) by promoting the recruitment of α-tubulin acetyltransferase 1 (αTAT1) to focal adhesions. Microtubule acetylation tunes the mechanosensitivity of focal adhesions and Yes-associated protein (YAP) translocation. Microtubule acetylation, in turn, promotes the release of the guanine nucleotide exchange factor GEF-H1 from microtubules to activate RhoA, actomyosin contractility and traction forces. Our results reveal a fundamental crosstalk between microtubules and actin in mechanotransduction that contributes to mechanosensitive cell adhesion and migration.


Asunto(s)
Mecanotransducción Celular , Microtúbulos , Citoesqueleto de Actina/metabolismo , Adhesión Celular , Adhesiones Focales/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo
8.
PLoS Comput Biol ; 18(9): e1010573, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36156590

RESUMEN

Fluorescence Recovery After Photobleaching (FRAP) has been extensively used to understand molecular dynamics in cells. This technique when applied to soluble, globular molecules driven by diffusion is easily interpreted and well understood. However, the classical methods of analysis cannot be applied to anisotropic structures subjected to directed transport, such as cytoskeletal filaments or elongated organelles transported along microtubule tracks. A new mathematical approach is needed to analyze FRAP data in this context and determine what information can be obtain from such experiments. To address these questions, we analyze fluorescence intensity profile curves after photobleaching of fluorescently labelled intermediate filaments anterogradely transported along microtubules. We apply the analysis to intermediate filament data to determine information about the filament motion. Our analysis consists of deriving equations for fluorescence intensity profiles and developing a mathematical model for the motion of filaments and simulating the model. Two closed forms for profile curves were derived, one for filaments of constant length and one for filaments with constant velocity, and three types of simulation were carried out. In the first type of simulation, the filaments have random velocities which are constant for the duration of the simulation. In the second type, filaments have random velocities which instantaneously change at random times. In the third type, filaments have random velocities and exhibit pausing between velocity changes. Our analysis shows: the most important distribution governing the shape of the intensity profile curves obtained from filaments is the distribution of the filament velocity. Furthermore, filament length which is constant during the experiment, had little impact on intensity profile curves. Finally, gamma distributions for the filament velocity with pauses give the best fit to asymmetric fluorescence intensity profiles of intermediate filaments observed in FRAP experiments performed in polarized migrating astrocytes. Our analysis also shows that the majority of filaments are stationary. Overall, our data give new insight into the regulation of intermediate filament dynamics during cell migration.


Asunto(s)
Citoesqueleto , Filamentos Intermedios , Movimiento Celular , Recuperación de Fluorescencia tras Fotoblanqueo , Microtúbulos
9.
J Theor Biol ; 547: 111183, 2022 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-35667486

RESUMEN

Noise affects all biological processes from molecules to cells, organisms and populations. Although the effect of noise on these processes is highly variable, evidence is accumulating which shows natural stochastic fluctuations (noise) can facilitate biological functions. Herein, we investigate the effect of noise on the transport of intermediate filaments in cells by comparing the stochastic and deterministic formalizations of the bidirectional transport of intermediate filaments, long elastic polymers transported along microtubules by antagonistic motor proteins (Dallon et al., 2019; Portet et al., 2019). By numerically exploring discrepancies in timescales and attractors between both formalizations, we characterize the impact of stochastic fluctuations on the individual and ensemble transport. Biologically, we find that noise promotes the collective movement of intermediate filaments and increases the efficiency of its regulation by the biochemical properties of motor-cargo interactions. While stochastic fluctuations reduce the impact of the initial distributions of motor proteins in cells, the number of binding sites and the affinity of motor-cargo interactions are the key parameters controlling transport efficiency and efficacy.


Asunto(s)
Fenómenos Bioquímicos , Proteínas Motoras Moleculares , Transporte Biológico , Dineínas/metabolismo , Filamentos Intermedios/metabolismo , Cinesinas , Microtúbulos/metabolismo , Modelos Biológicos , Proteínas Motoras Moleculares/metabolismo
10.
J Cell Sci ; 132(19)2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31597743

RESUMEN

Cell adhesion to the extracellular matrix is essential for cellular processes, such as migration and invasion. In response to cues from the microenvironment, integrin-mediated adhesions alter cellular behaviour through cytoskeletal rearrangements. The tight association of the actin cytoskeleton with adhesive structures has been extensively studied, whereas the microtubule network in this context has gathered far less attention. In recent years, however, microtubules have emerged as key regulators of cell adhesion and migration through their participation in adhesion turnover and cellular signalling. In this Review, we focus on the interactions between microtubules and integrin-mediated adhesions, in particular, focal adhesions and podosomes. Starting with the association of microtubules with these adhesive structures, we describe the classical role of microtubules in vesicular trafficking, which is involved in the turnover of cell adhesions, before discussing how microtubules can also influence the actin-focal adhesion interplay through RhoGTPase signalling, thereby orchestrating a very crucial crosstalk between the cytoskeletal networks and adhesions.


Asunto(s)
Adhesiones Focales/metabolismo , Microtúbulos/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Citoesqueleto/metabolismo , Humanos , Transducción de Señal/fisiología
11.
J Cell Sci ; 132(7)2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30858195

RESUMEN

Microtubules play a crucial role in mesenchymal migration by controlling cell polarity and the turnover of cell adhesive structures on the extracellular matrix. The polarized functions of microtubules imply that microtubules are locally regulated. Here, we investigated the regulation and role of two major tubulin post-translational modifications, acetylation and detyrosination, which have been associated with stable microtubules. Using primary astrocytes in a wound healing assay, we show that these tubulin modifications are independently regulated during cell polarization and differently affect cell migration. In contrast to microtubule detyrosination, αTAT1 (ATAT1)-mediated microtubule acetylation increases in the vicinity of focal adhesions and promotes cell migration. We further demonstrate that αTAT1 increases focal adhesion turnover by promoting Rab6-positive vesicle fusion at focal adhesions. Our results highlight the specificity of microtubule post-translational modifications and bring new insight into the regulatory functions of tubulin acetylation.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Astrocitos/citología , Adhesiones Focales , Microtúbulos/química , Tubulina (Proteína)/química , Acetilación , Animales , Movimiento Celular , Polaridad Celular , Proteínas Asociadas a Microtúbulos/metabolismo , Procesamiento Proteico-Postraduccional , Ratas
12.
Development ; 145(4)2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29475972

RESUMEN

Astrocytes undergo intense morphological maturation during development, changing from individual sparsely branched cells to polarized and tremendously ramified cells. Connexin 30, an astroglial gap-junction channel-forming protein expressed postnatally, regulates in situ the extension and ramification of astroglial processes. However, the involvement of connexin 30 in astroglial polarization, which is known to control cell morphology, remains unexplored. We found that connexin 30, independently of gap-junction-mediated intercellular biochemical coupling, alters the orientation of astrocyte protrusion, centrosome and Golgi apparatus during polarized migration in an in vitro wound-healing assay. Connexin 30 sets the orientation of astroglial motile protrusions via modulation of the laminin/ß1 integrin/Cdc42 polarity pathway. Connexin 30 indeed reduces laminin levels, inhibits the redistribution of the ß1-integrin extracellular matrix receptors, and inhibits the recruitment and activation of the small Rho GTPase Cdc42 at the leading edge of migrating astrocytes. In vivo, connexin 30, the expression of which is developmentally regulated, also contributes to the establishment of hippocampal astrocyte polarity during postnatal maturation. This study thus reveals that connexin 30 controls astroglial polarity during development.


Asunto(s)
Astrocitos/citología , Encéfalo/citología , Polaridad Celular/fisiología , Conexina 30/metabolismo , Animales , Astrocitos/fisiología , Encéfalo/metabolismo , Encéfalo/fisiología , Ensayos de Migración Celular , Técnica del Anticuerpo Fluorescente , Ratones
13.
J Cell Biochem ; 120(8): 13168-13176, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30887571

RESUMEN

Intermediate filaments (IFs) play a key role in the control of cell structure and morphology, cell mechano-responses, migration, proliferation, and apoptosis. However, the mechanisms regulating IFs organization in motile adhesive cells under certain physical/pathological conditions remain to be fully understood. In this study, we found hypo-osmotic-induced stress results in a dramatic but reversible rearrangement of the IF network. Vimentin and nestin IFs are partially depolymerized as they are redistributed throughout the cell cytoplasm after hypo-osmotic shock. This spreading of the IFs requires an intact microtubule network and the motor protein associated transportation. Both nocodazole treatment and depletion of kinesin-1 (KIF5B) block the hypo-osmotic shock-induced rearrangement of IFs showing that the dynamic behavior of IFs largely depends on microtubules and kinesin-dependent transport. Moreover, we show that cell survival rates are dramatically decreased in response to hypo-osmotic shock, which was more severe by vimentin IFs depletion, indicating its contribution to osmotic endurance. Collectively, these results reveal a critical role of vimentin IFs under hypotonic stress and provide evidence that IFs are important for the defense mechanisms during the osmotic challenge.


Asunto(s)
Filamentos Intermedios/metabolismo , Vimentina/metabolismo , Línea Celular Tumoral , Técnica del Anticuerpo Fluorescente , Células HeLa , Humanos , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Nocodazol/farmacología , Presión Osmótica/efectos de los fármacos
14.
J Theor Biol ; 464: 132-148, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30594630

RESUMEN

Intermediate filaments are a key component of the cytoskeleton. Their transport along microtubules plays an essential role in the control of the shape and structural organization of cells. To identify the key parameters responsible for the control of intermediate filament transport, we generated a model of elastic filament transport by microtubule-associated dynein and kinesin. The model is also applicable to the transport of any elastically-coupled cargoes. We investigate the effect of filament properties such as number of motor binding sites, length, and elasticity on motion of filaments. Additionally, we consider the effect of motor properties, i.e. off rates, on filament transport. When one motor has a catch bond off rate it dictates the motion, whereas when motors have the same type of off rate filaments can alternate between retrograde and anterograde motions. The elasticity of filaments optimizes the filament transport and the coordination of motors along the length of the filament.


Asunto(s)
Dineínas , Filamentos Intermedios , Cinesinas , Microtúbulos , Modelos Biológicos , Transporte Biológico Activo/fisiología , Dineínas/química , Dineínas/metabolismo , Filamentos Intermedios/química , Filamentos Intermedios/metabolismo , Cinesinas/química , Cinesinas/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Procesos Estocásticos
15.
Biol Cell ; 110(3): 49-64, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29388220

RESUMEN

Cells sense and respond to the biochemical and physical properties of the extracellular matrix (ECM) through adhesive structures that bridge the cell cytoskeleton and the surrounding environment. Integrin-mediated adhesions interact with specific ECM proteins and sense the rigidity of the substrate to trigger signalling pathways that, in turn, regulate cellular processes such as adhesion, motility, proliferation and differentiation. This process, called mechanotransduction, influenced by the involvement of different integrin subtypes and their high ECM-ligand binding specificity, contributes to the cell-type-specific mechanical responses. In this review, we describe how the expression of particular integrin subtypes affects cellular adaptation to substrate rigidity. We then explain the role of integrins and associated proteins in mechanotransduction, focusing on their specificity in mechanosensing and force transmission.


Asunto(s)
Integrinas/metabolismo , Mecanotransducción Celular/fisiología , Animales , Matriz Extracelular/metabolismo , Humanos
17.
EMBO J ; 30(13): 2557-68, 2011 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-21642958

RESUMEN

The tumour suppressor PTEN (phosphatase and tensin deleted on chromosome 10) regulates major cellular functions via lipid phosphatase-dependent and -independent mechanisms. Despite its fundamental pathophysiological importance, how PTEN's cellular activity is regulated has only been partially elucidated. We report that the scaffolding proteins ß-arrestins (ß-arrs) are important regulators of PTEN. Downstream of receptor-activated RhoA/ROCK signalling, ß-arrs activate the lipid phosphatase activity of PTEN to negatively regulate Akt and cell proliferation. In contrast, following wound-induced RhoA activation, ß-arrs inhibit the lipid phosphatase-independent anti-migratory effects of PTEN. ß-arrs can thus differentially control distinct functional outputs of PTEN important for cell proliferation and migration.


Asunto(s)
Arrestinas/metabolismo , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/fisiología , Animales , Arrestinas/antagonistas & inhibidores , Arrestinas/genética , Arrestinas/fisiología , Células COS , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Chlorocebus aethiops , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Ratones , Fosfohidrolasa PTEN/genética , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Unión Proteica/fisiología , ARN Interferente Pequeño/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/fisiología , beta-Arrestinas
18.
Exp Cell Res ; 328(2): 240-8, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25218948

RESUMEN

The centrosome position is tightly regulated during the cell cycle and during differentiated cellular functions. Because centrosome organizes the microtubule network to coordinate both intracellular organization and cell signaling, centrosome positioning is crucial to determine either the axis of cell division, the direction of cell migration or the polarized immune response of lymphocytes. Since alteration of centrosome positioning seems to promote cell transformation and tumor spreading, the molecular mechanisms controlling centrosome movement in response to extracellular and intracellular cues are under intense investigation. Evolutionary conserved pathways involving polarity proteins and cytoskeletal rearrangements are emerging as common regulators of centrosome positioning in a wide variety of cellular contexts.


Asunto(s)
Polaridad Celular/fisiología , Centrosoma/fisiología , Animales , Comunicación Celular/fisiología , División Celular/fisiología , Movimiento Celular/fisiología
20.
EMBO J ; 29(14): 2301-14, 2010 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-20551903

RESUMEN

T-cell receptor (TCR) signalling is triggered and tuned at immunological synapses by the generation of signalling complexes that associate into dynamic microclusters. Microcluster movement is necessary to tune TCR signalling, but the molecular mechanism involved remains poorly known. We show here that the membrane-microfilament linker ezrin has an important function in microcluster dynamics and in TCR signalling through its ability to set the microtubule network organization at the immunological synapse. Importantly, ezrin and microtubules are important to down-regulate signalling events leading to Erk1/2 activation. In addition, ezrin is required for appropriate NF-AT activation through p38 MAP kinase. Our data strongly support the notion that ezrin regulates immune synapse architecture and T-cell activation through its interaction with the scaffold protein Dlg1. These results uncover a crucial function for ezrin, Dlg1 and microtubules in the organization of the immune synapse and TCR signal down-regulation. Moreover, they underscore the importance of ezrin and Dlg1 in the regulation of NF-AT activation through p38.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas del Citoesqueleto/inmunología , Sinapsis Inmunológicas , Activación de Linfocitos/inmunología , Proteínas de la Membrana/metabolismo , Microtúbulos/metabolismo , Linfocitos T , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Homólogo 1 de la Proteína Discs Large , Activación Enzimática , Humanos , Sinapsis Inmunológicas/química , Sinapsis Inmunológicas/metabolismo , Sinapsis Inmunológicas/ultraestructura , Células Jurkat , Proteínas de la Membrana/genética , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/fisiología , Linfocitos T/citología , Linfocitos T/inmunología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA