Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
PLoS Pathog ; 17(2): e1009299, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33592056

RESUMEN

Neisseria meningitidis (the meningococcus) remains a major cause of bacterial meningitis and fatal sepsis. This commensal bacterium of the human nasopharynx can cause invasive diseases when it leaves its niche and reaches the bloodstream. Blood-borne meningococci have the ability to adhere to human endothelial cells and rapidly colonize microvessels. This crucial step enables dissemination into tissues and promotes deregulated inflammation and coagulation, leading to extensive necrotic purpura in the most severe cases. Adhesion to blood vessels relies on type IV pili (TFP). These long filamentous structures are highly dynamic as they can rapidly elongate and retract by the antagonistic action of two ATPases, PilF and PilT. However, the consequences of TFP dynamics on the pathophysiology and the outcome of meningococcal sepsis in vivo have been poorly studied. Here, we show that human graft microvessels are replicative niches for meningococci, that seed the bloodstream and promote sustained bacteremia and lethality in a humanized mouse model. Intriguingly, although pilus-retraction deficient N. meningitidis strain (ΔpilT) efficiently colonizes human graft tissue, this mutant did not promote sustained bacteremia nor induce mouse lethality. This effect was not due to a decreased inflammatory response, nor defects in bacterial clearance by the innate immune system. Rather, TFP-retraction was necessary to promote the release of TFP-dependent contacts between bacteria and, in turn, the detachment from colonized microvessels. The resulting sustained bacteremia was directly correlated with lethality. Altogether, these results demonstrate that pilus retraction plays a key role in the occurrence and outcome of meningococcal sepsis by supporting sustained bacteremia. These findings open new perspectives on the role of circulating bacteria in the pathological alterations leading to lethal sepsis.


Asunto(s)
Bacteriemia/microbiología , Modelos Animales de Enfermedad , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/fisiología , Infecciones Meningocócicas/microbiología , Neisseria meningitidis/patogenicidad , Sepsis/microbiología , Animales , Bacteriemia/metabolismo , Bacteriemia/patología , Adhesión Bacteriana , Células Endoteliales , Femenino , Proteínas Fimbrias/genética , Humanos , Infecciones Meningocócicas/metabolismo , Infecciones Meningocócicas/patología , Ratones , Ratones SCID , Sepsis/metabolismo , Sepsis/patología , Trasplante de Piel
2.
PLoS Pathog ; 17(8): e1009326, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34339477

RESUMEN

Metabolic pathways are now considered as intrinsic virulence attributes of pathogenic bacteria and thus represent potential targets for antibacterial strategies. Here we focused on the role of the pentose phosphate pathway (PPP) and its connections with other metabolic pathways in the pathophysiology of Francisella novicida. The involvement of the PPP in the intracellular life cycle of Francisella was first demonstrated by studying PPP inactivating mutants. Indeed, we observed that inactivation of the tktA, rpiA or rpe genes severely impaired intramacrophage multiplication during the first 24 hours. However, time-lapse video microscopy demonstrated that rpiA and rpe mutants were able to resume late intracellular multiplication. To better understand the links between PPP and other metabolic networks in the bacterium, we also performed an extensive proteo-metabolomic analysis of these mutants. We show that the PPP constitutes a major bacterial metabolic hub with multiple connections to glycolysis, the tricarboxylic acid cycle and other pathways, such as fatty acid degradation and sulfur metabolism. Altogether our study highlights how PPP plays a key role in the pathogenesis and growth of Francisella in its intracellular niche.


Asunto(s)
Proteínas Bacterianas/metabolismo , Drosophila melanogaster/metabolismo , Francisella/patogenicidad , Infecciones por Bacterias Gramnegativas/microbiología , Metaboloma , Vía de Pentosa Fosfato , Proteoma , Animales , Proteínas Bacterianas/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/microbiología , Francisella/metabolismo , Regulación Bacteriana de la Expresión Génica , Glucólisis , Macrófagos/metabolismo , Macrófagos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación
3.
J Infect Dis ; 226(7): 1276-1285, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35524969

RESUMEN

BACKGROUND: Staphylococcus aureus dominates the lung microbiota of children with cystic fibrosis (CF) and persistent clones are able to establish chronic infection for years, having a direct deleterious impact on lung function. However, in this context, the exact contribution of S. aureus to the decline in respiratory function in children with CF is not elucidated. METHODS: To investigate the contribution of persistent S. aureus clones in CF disease, we undertook the analysis of sequential isogenic isolates recovered from 15 young CF patients. RESULTS: Using an air-liquid infection model, we observed a strong correlation between S. aureus adaption in the lung (late isolates), low toxicity, and proinflammatory cytokine secretion. Conversely, early isolates appeared to be highly cytotoxic but did not promote cytokine secretion. We found that cytokine secretion was dependent on staphylococcal protein A (Spa), which was selectively expressed in late compared to early isolates as a consequence of dysfunctional agr quorum-sensing system. Finally, we demonstrated the involvement of TNF-α receptor 1 signaling in the inflammatory response of airway epithelial cells to these lung-adapted S. aureus isolates. CONCLUSIONS: Our results suggest an unexpected direct role of bacterial lung adaptation in the progression of chronic lung disease by promoting a proinflammatory response through acquired agr dysfunction.


Asunto(s)
Fibrosis Quística , Infecciones Estafilocócicas , Niño , Fibrosis Quística/complicaciones , Fibrosis Quística/microbiología , Humanos , Pulmón/metabolismo , Infecciones Estafilocócicas/microbiología , Proteína Estafilocócica A , Staphylococcus aureus/fisiología , Factor de Necrosis Tumoral alfa
4.
J Clin Microbiol ; 59(3)2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33328176

RESUMEN

Staphylococcus epidermidis is a pathogen emerging worldwide as a leading cause of health care-associated infections. A standardized high-resolution typing method to document transmission and dissemination of multidrug-resistant S. epidermidis strains is needed. Our aim was to provide a core genome multilocus sequence typing (cgMLST) scheme for S. epidermidis to improve the international surveillance of S. epidermidis We defined a cgMLST scheme based on 699 core genes and used it to investigate the population structure of the species and the genetic relatedness of isolates recovered from infants hospitalized in several wards of a French hospital. Our results show the long-lasting endemic persistence of S. epidermidis clones within and across wards of hospitals and demonstrate the ability of our cgMLST approach to identify and track these clones. We made the scheme publicly available through the Institut Pasteur BIGSdb server (http://bigsdb.pasteur.fr/epidermidis/). This tool should enable international harmonization of the epidemiological surveillance of multidrug-resistant S. epidermidis clones. By comparing gene distribution among infection and commensal isolates, we also confirmed the association of the mecA locus with infection isolates and of the fdh gene with commensal isolates. (This study has been registered at ClinicalTrials.gov under registration no. NCT03374371.).


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus epidermidis , Células Clonales , Genoma Bacteriano/genética , Hospitales , Humanos , Tipificación de Secuencias Multilocus , Infecciones Estafilocócicas/epidemiología , Staphylococcus epidermidis/genética
5.
J Infect Dis ; 220(12): 1967-1976, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31420648

RESUMEN

Staphylococcus aureus is a leading cause of both acute and chronic infections in humans. The importance of the pentose phosphate pathway (PPP) during S. aureus infection is currently largely unexplored. In the current study, we focused on one key PPP enzyme, transketolase (TKT). We showed that inactivation of the unique gene encoding TKT activity in S. aureus USA300 (∆tkt) led to drastic metabolomic changes. Using time-lapse video imaging and mice infection, we observed a major defect of the ∆tkt strain compared with wild-type strain in early intracellular proliferation and in the ability to colonize kidneys. Transcriptional activity of the 2 master regulators sigma B and RpiRc was drastically reduced in the ∆tkt mutant during host cells invasion. The concomitant increased RNAIII transcription suggests that TKT-or a functional PPP-strongly influences the ability of S. aureus to proliferate within host cells by modulating key transcriptional regulators.


Asunto(s)
Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/fisiología , Estrés Fisiológico , Transcetolasa/metabolismo , Animales , Carbono/metabolismo , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica/métodos , Regulación Bacteriana de la Expresión Génica , Silenciador del Gen , Genes Bacterianos , Humanos , Riñón/metabolismo , Riñón/microbiología , Metabolómica/métodos , Ratones , Mutación , Fenotipo , Transducción de Señal , Staphylococcus aureus/enzimología , Estrés Fisiológico/genética , Transcetolasa/genética
6.
Clin Infect Dis ; 69(11): 1937-1945, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30753350

RESUMEN

BACKGROUND: Chronic lung infection in cystic fibrosis (CF) patients by Staphylococcus aureus is a well-established epidemiological fact. Indeed, S. aureus is the most commonly identified pathogen in the lungs of CF patients. Improving our understanding of the mechanisms associated with the persistence of S. aureus is therefore an important issue. METHODS: We selected pairs of sequential S. aureus isolates from 3 patients with CF and from 1 patient with non-CF chronic lung disease. We used a combination of genomic, proteomic, and metabolomic approaches with functional assays for in-depth characterization of S. aureus long-term persistence. RESULTS: In this study, we show that late S. aureus isolates from CF patients have an increased ability for intracellular survival in CF bronchial epithelial-F508del cells compared to ancestral early isolates. Importantly, the increased ability to persist intracellularly was confirmed for S. aureus isolates within the own-patient F508del epithelial cells. An increased ability to form biofilm was also demonstrated. Furthermore, we identified the underlying genetic modifications that induce altered protein expression profiles and notable metabolic changes. These modifications affect several metabolic pathways and virulence regulators that could constitute therapeutic targets. CONCLUSIONS: Our results strongly suggest that the intracellular environment might constitute an important niche of persistence and relapse necessitating adapted antibiotic treatments.


Asunto(s)
Staphylococcus aureus/efectos de los fármacos , Adaptación Fisiológica/efectos de los fármacos , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Línea Celular , Células Cultivadas , Cromatografía Liquida , Humanos , Proteogenómica/métodos , Proteómica/métodos , Espectrometría de Masas en Tándem
7.
PLoS Pathog ; 13(7): e1006495, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28704569

RESUMEN

Neisseria meningitidis is a commensal of human nasopharynx. In some circumstances, this bacteria can invade the bloodstream and, after crossing the blood brain barrier, the meninges. A filamentous phage, designated MDAΦ for Meningococcal Disease Associated, has been associated with invasive disease. In this work we show that the prophage is not associated with a higher virulence during the bloodstream phase of the disease. However, looking at the interaction of N. meningitidis with epithelial cells, a step essential for colonization of the nasopharynx, we demonstrate that the presence of the prophage, via the production of viruses, increases colonization of encapsulated meningococci onto monolayers of epithelial cells. The analysis of the biomass covering the epithelial cells revealed that meningococci are bound to the apical surface of host cells by few layers of heavily piliated bacteria, whereas, in the upper layers, bacteria are non-piliated but surrounded by phage particles which (i) form bundles of filaments, and/or (ii) are in some places associated with bacteria. The latter are likely to correspond to growing bacteriophages during their extrusion through the outer membrane. These data suggest that, as the biomass increases, the loss of piliation in the upper layers of the biomass does not allow type IV pilus bacterial aggregation, but is compensated by a large production of phage particles that promote bacterial aggregation via the formation of bundles of phage filaments linked to the bacterial cell walls. We propose that MDAΦ by increasing bacterial colonization in the mucosa at the site-of-entry, increase the occurrence of diseases.


Asunto(s)
Inovirus/fisiología , Infecciones Meningocócicas/microbiología , Neisseria meningitidis/patogenicidad , Neisseria meningitidis/virología , Animales , Adhesión Bacteriana , Células Epiteliales/microbiología , Femenino , Fimbrias Bacterianas/fisiología , Humanos , Ratones , Ratones SCID , Nasofaringe/microbiología , Neisseria meningitidis/crecimiento & desarrollo , Neisseria meningitidis/fisiología , Profagos/fisiología , Virulencia
8.
PLoS Pathog ; 11(1): e1004592, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25569427

RESUMEN

The genus Neisseria includes both commensal and pathogenic species which are genetically closely related. However, only meningococcus and gonococcus are important human pathogens. Very few toxins are known to be secreted by pathogenic Neisseria species. Recently, toxins secreted via type V secretion system and belonging to the widespread family of contact-dependent inhibition (CDI) toxins have been described in numerous species including meningococcus. In this study, we analyzed loci containing the maf genes in N. meningitidis and N. gonorrhoeae and proposed a novel uniform nomenclature for maf genomic islands (MGIs). We demonstrated that mafB genes encode secreted polymorphic toxins and that genes immediately downstream of mafB encode a specific immunity protein (MafI). We focused on a MafB toxin found in meningococcal strain NEM8013 and characterized its EndoU ribonuclease activity. maf genes represent 2% of the genome of pathogenic Neisseria, and are virtually absent from non-pathogenic species, thus arguing for an important biological role. Indeed, we showed that overexpression of one of the four MafB toxins of strain NEM8013 provides an advantage in competition assays, suggesting a role of maf loci in niche adaptation.


Asunto(s)
Toxinas Bacterianas/genética , Neisseria/genética , Neisseria/patogenicidad , Secuencia de Aminoácidos , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Genes Bacterianos , Islas Genómicas/genética , Humanos , Datos de Secuencia Molecular , Familia de Multigenes , Neisseria/metabolismo , Organismos Modificados Genéticamente , Estructura Terciaria de Proteína , Vías Secretoras , Virulencia/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
9.
Microbiology (Reading) ; 162(2): 268-282, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26602366

RESUMEN

The mechanism by which Neisseria meningitidis becomes invasive is not well understood. Comparative genomics identified the presence of an 8 kb island in strains belonging to invasive clonal complexes. This island was designated MDA for meningococcal disease associated. MDA is highly conserved among meningococcal isolates and its analysis revealed a genomic organization similar to that of a filamentous prophage such as CTXΦ of Vibrio cholerae. Subsequent molecular investigations showed that the MDA island has indeed the characteristics of a filamentous prophage, which can enter into a productive cycle and is secreted using the type IV pilus (tfp) secretin PilQ. At least three genes of the prophage are necessary for the formation of the replicative cytoplasmic form (orf1, orf2 and orf9). Immunolabelling of the phage with antibodies against the major capsid protein, ORF4, confirmed that filamentous particles, about 1200 nm long, covered with ORF4 are present at the bacterial surface forming bundles in some places and interacting with pili. The MDA bacteriophage is able to infect different N. meningitidis strains, using the type IV pili as a receptor via an interaction with the adsorption protein ORF6. Altogether, these data demonstrate that the MDA island encodes a functional prophage able to produce infectious filamentous phage particles.


Asunto(s)
Sitios de Ligazón Microbiológica/genética , Inovirus/genética , Neisseria meningitidis/genética , Neisseria meningitidis/virología , Profagos/genética , Receptores Virales/genética , Secuencia de Bases , ADN Viral/genética , Fimbrias Bacterianas/virología , Infecciones Meningocócicas/microbiología , Neisseria meningitidis/patogenicidad , Análisis de Secuencia de ADN
10.
Infect Immun ; 81(9): 3375-81, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23817612

RESUMEN

Neisseria meningitidis is a worldwide cause of meningitis and septicemia leading at least to 50,000 deaths every year. Nevertheless, N. meningitidis is also a commensal bacterium that asymptomatically colonizes the epithelial cells of the nasopharynx of 10 to 30% of healthy individuals. Occasionally, N. meningitidis crosses the nasopharyngeal barrier and enters the bloodstream. During bacteremia, N. meningitidis may adhere to endothelial cells of brain vessels and invade meninges. To identify the genes required for meningococcal host colonization, we screened a signature-tagged transposon mutagenesis library using an innovative in vitro colonization model in order to identify mutants displaying decreased capacity to colonize human epithelial cells. Approximately 1,600 defined insertion mutants of invasive serogroup C strain NEM8013 were screened. Candidate mutants were tested individually for quantification of bacterial biomass with confocal microscope and COMSTAT software. Five mutants were demonstrated to exhibit significantly decreased colonization ability. The identified genes, including narP and estD, appeared to be involved in adaptation to hypoxic conditions and stress resistance. Interestingly, the genes fadD1, nnrS, and NMV_2034 (encoding a putative thioredoxin), prior to this study, had not been shown to be involved in colonization. Therefore, we provide here insights into the meningococcal functions necessary for the bacterium to adapt to growth on host cells.


Asunto(s)
Adhesión Bacteriana/genética , Infecciones Meningocócicas/genética , Infecciones Meningocócicas/microbiología , Neisseria meningitidis/genética , Proteínas Bacterianas/genética , Biomasa , Línea Celular Tumoral , Elementos Transponibles de ADN/genética , Células Epiteliales/microbiología , Biblioteca de Genes , Humanos , Mutagénesis/genética , Mutagénesis Insercional , Neisseria meningitidis/crecimiento & desarrollo
11.
Microbes Infect ; 25(6): 105124, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36871931

RESUMEN

Staphylococcus aureus is the predominant pathogen in children with cystic fibrosis (CF) in France and, around 80% of them harbored S. aureus in their lungs. This study investigated virulence and antimicrobial resistance-associated genes and within-host evolution polymorphisms in 14 S. aureus persistent clones from 14 chronically infected CF children. For each of the 14 patients, we compared genomes of two isogenic sequential isolates separated by 2-9 years. All isolates were methicillin-sensitive and harbored the immune evasion gene cluster, whereas half of them harbored the enterotoxin gene cluster. Most clones were capsule type 8 (8/14) and accessory gene regulator (agr)-specificity group 1 (9/14). We identified convergent mutations in genes involved in carbohydrate metabolism, cell wall metabolism, genetic information processing and adhesion, which are likely to play important role in intracellular invasion and persistence. Further explorations relying notably on proteomics will contribute to improve our understanding of the mechanisms at play in the striking long-term persistence ability of S. aureus.


Asunto(s)
Fibrosis Quística , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Niño , Humanos , Staphylococcus aureus/genética , Fibrosis Quística/complicaciones , Pulmón , Proteómica , Antibacterianos , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana
12.
Nat Commun ; 14(1): 8135, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38065959

RESUMEN

Staphylococcus aureus is a predominant cause of chronic lung infections. While the airway environment is rich in highly sialylated mucins, the interaction of S. aureus with sialic acid is poorly characterized. Using S. aureus USA300 as well as clinical isolates, we demonstrate that quorum-sensing dysfunction, a hallmark of S. aureus adaptation, correlates with a greater ability to consume free sialic acid, providing a growth advantage in an air-liquid interface model and in vivo. Furthermore, RNA-seq experiment reveals that free sialic acid triggers transcriptional reprogramming promoting S. aureus chronic lifestyle. To support the clinical relevance of our results, we show the co-occurrence of S. aureus, sialidase-producing microbiota and free sialic acid in the airway of patients with cystic fibrosis. Our findings suggest a dual role for sialic acid in S. aureus airway infection, triggering virulence reprogramming and driving S. aureus adaptive strategies through the selection of quorum-sensing dysfunctional strains.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Percepción de Quorum/genética , Ácido N-Acetilneuramínico , Sistema Respiratorio , Proteínas Bacterianas
13.
Mol Microbiol ; 78(4): 989-1003, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21062372

RESUMEN

The MmpS family (mycobacterial membrane protein small) includes over 100 small membrane proteins specific to the genus Mycobacterium that have not yet been studied experimentally. The genes encoding MmpS proteins are often associated with mmpL genes, which are homologous to the RND (resistance nodulation cell division) genes of Gram-negative bacteria that encode proteins functioning as multidrug efflux system. We showed by molecular genetics and biochemical analysis that MmpS4 in Mycobacterium smegmatis is required for the production and export of large amounts of cell surface glycolipids, but is dispensable for biosynthesis per se. A new specific and sensitive method utilizing single-chain antibodies against the surface-exposed glycolipids was developed to confirm that MmpS4 was dispensable for transport to the surface. Orthologous complementation demonstrated that the MmpS4 proteins are exchangeable, thus not specific to a defined lipid species. MmpS4 function requires the formation of a protein complex at the pole of the bacillus, which requires the extracytosolic C-terminal domain of MmpS4. We suggest that MmpS proteins facilitate lipid biosynthesis by acting as a scaffold for coupled biosynthesis and transport machinery.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glucolípidos/metabolismo , Glicopéptidos/metabolismo , Proteínas de la Membrana/metabolismo , Mycobacterium smegmatis/metabolismo , Proteínas Bacterianas/genética , Prueba de Complementación Genética , Proteínas de la Membrana/genética , Mycobacterium smegmatis/genética , Anticuerpos de Cadena Única/inmunología
14.
BMC Microbiol ; 11: 231, 2011 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-22008214

RESUMEN

BACKGROUND: The aerobic fast-growing Mycobacterium smegmatis, like its slow-growing pathogenic counterpart Mycobacterium tuberculosis, has the ability to adapt to microaerobiosis by shifting from growth to a non-proliferating or dormant state. The molecular mechanism of dormancy is not fully understood and various hypotheses have been formulated to explain it. In this work, we open new insight in the knowledge of M. smegmatis dormancy, by identifying and characterizing genes involved in this behavior. RESULTS: In a library generated by transposon mutagenesis, we searched for M. smegmatis mutants unable to survive a coincident condition of hypoxia and low carbon content, two stress factors supposedly encountered in the host and inducing dormancy in tubercle bacilli. Two mutants were identified that mapped in the uvrA gene, coding for an essential component of the Nucleotide Excision Repair system (NER). The two mutants showed identical phenotypes, although the respective transposon insertions hit different regions of the uvrA gene. The restoration of the uvrA activity in M. smegmatis by complementation with the uvrA gene of M. tuberculosis, confirmed that i) uvrA inactivation was indeed responsible for the inability of M. smegmatis cells to enter or exit dormancy and, therefore, survive hypoxia and presence of low carbon and ii) showed that the respective uvrA genes of M. tuberculosis and M. smegmatis are true orthologs. The rate of survival of wild type, uvrA mutant and complemented strains under conditions of oxidative stress and UV irradiation was determined qualitatively and quantitatively. CONCLUSIONS: Taken together our results confirm that the mycobacterial NER system is involved in adaptation to various stress conditions and suggest that cells with a compromised DNA repair system have an impaired dormancy behavior.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Mutación , Mycobacterium smegmatis/enzimología , Mycobacterium smegmatis/crecimiento & desarrollo , Oxígeno/metabolismo , Carbono , Regulación Bacteriana de la Expresión Génica , Mutagénesis , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Estrés Oxidativo
15.
mBio ; 12(3): e0027621, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34126772

RESUMEN

Antibiotic-resistant Staphylococcus aureus strains constitute a major public health concern worldwide and are responsible for both health care- and community-associated infections. Here, we establish a robust and easy-to-implement model of oral S. aureus infection using Drosophila melanogaster larvae that allowed us to follow the fate of S. aureus at the whole-organism level as well as the host immune responses. Our study demonstrates that S. aureus infection triggers H2O2 production by the host via the Duox enzyme, thereby promoting antimicrobial peptide production through activation of the Toll pathway. Staphylococcal catalase mediates H2O2 neutralization, which not only promotes S. aureus survival but also minimizes the host antimicrobial response, hence reducing bacterial clearance in vivo. We show that while catalase expression is regulated in vitro by the accessory gene regulatory system (Agr) and the general stress response regulator sigma B (SigB), it no longer depends on these two master regulators in vivo. Finally, we confirm the versatility of this model by demonstrating the colonization and host stimulation capabilities of S. aureus strains belonging to different sequence types (CC8 and CC5) as well as of two other bacterial pathogens, Salmonella enterica serovar Typhimurium and Shigella flexneri. Thus, the Drosophila larva can be a general model to follow in vivo the innate host immune responses triggered during infection by human pathogens. IMPORTANCE The pathogenicity of methicillin-resistant S. aureus (MRSA) strains relies on their ability to produce a wide variety of tightly regulated virulence factors. Current in vivo models to analyze host-pathogen interactions are limited and difficult to manipulate. Here, we have established a robust and reliable model of oral S. aureus infection using Drosophila melanogaster larvae. We show that S. aureus stimulates host immunity through the production of reactive oxygen species (ROS) and antimicrobial peptide (AMP) and that ROS potentialize AMP gene expression. S. aureus catalase plays a key role in this complex environment and acts in vivo independently from SigB and Agr control. We propose that fly larvae can provide a general model for studying the colonization capabilities of human pathogens.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Staphylococcus aureus Resistente a Meticilina/inmunología , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Especies Reactivas de Oxígeno/inmunología , Animales , Modelos Animales de Enfermedad , Drosophila melanogaster/inmunología , Drosophila melanogaster/microbiología , Regulación Bacteriana de la Expresión Génica , Larva/inmunología , Larva/microbiología , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/inmunología , Especies Reactivas de Oxígeno/metabolismo , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Virulencia
16.
FEMS Microbiol Lett ; 290(1): 39-44, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19025562

RESUMEN

The cell surface of mycobacteria is quite rich in lipids. Glycopeptidolipids, surface-exposed lipids that typify some mycobacterial species, have been associated with a phenotypic switch between rough and smooth colony morphotypes. This conversion in Mycobacterium smegmatis is correlated with the absence/presence of glycopeptidolipids on the cell surface and is due to insertion sequence mobility. Here, we show that the occurrence of a high amount of glycopeptidolipids in the smooth variant leads to lower invasion abilities and lower internalization by macrophages. We further show that the high production of glycopeptidolipids on the cell surface can confer a selective advantage to the smooth variant when grown in vitro. This higher fitness under the laboratory condition might explain the selection of smooth variants in several independent laboratories. The implications of these findings are discussed.


Asunto(s)
Células Epiteliales/microbiología , Glucolípidos/química , Glicopéptidos/química , Macrófagos/microbiología , Mycobacterium smegmatis/crecimiento & desarrollo , Fagocitosis , Animales , Línea Celular , Membrana Celular/química , Membrana Celular/metabolismo , Células Epiteliales/inmunología , Glucolípidos/metabolismo , Glicopéptidos/metabolismo , Macrófagos/inmunología , Ratones , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/fisiología , Fagocitosis/inmunología
17.
Nat Microbiol ; 4(6): 972-984, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30911127

RESUMEN

Bacterial virulence factors are attractive targets for the development of therapeutics. Type IV pili, which are associated with a remarkable array of properties including motility, the interaction between bacteria and attachment to biotic and abiotic surfaces, represent particularly appealing virulence factor targets. Type IV pili are present in numerous bacterial species and are critical for their pathogenesis. In this study, we report that trifluoperazine and related phenothiazines block functions associated with Type IV pili in different bacterial pathogens, by affecting piliation within minutes. Using Neisseria meningitidis as a paradigm of Gram-negative bacterial pathogens that require Type IV pili for pathogenesis, we show that piliation is sensitive to altered activity of the Na+ pumping NADH-ubiquinone oxidoreductase (Na+-NQR) complex and that these compounds probably altered the establishment of the sodium gradient. In vivo, these compounds exert a strong protective effect. They reduce meningococcal colonization of the human vessels and prevent subsequent vascular dysfunctions, intravascular coagulation and overwhelming inflammation, the hallmarks of invasive meningococcal infections. Finally, they reduce lethality. This work provides a proof of concept that compounds with activity against bacterial Type IV pili could beneficially participate in the treatment of infections caused by Type IV pilus-expressing bacteria.


Asunto(s)
Fimbrias Bacterianas/efectos de los fármacos , Fimbrias Bacterianas/fisiología , Infecciones Meningocócicas/prevención & control , Neisseria meningitidis/efectos de los fármacos , Factores de Virulencia , Animales , Antibacterianos/farmacología , Vasos Sanguíneos/lesiones , Vasos Sanguíneos/microbiología , Vasos Sanguíneos/patología , Combinación de Medicamentos , Complejo I de Transporte de Electrón , Femenino , Fimbrias Bacterianas/genética , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Bacterias Gramnegativas , Humanos , Ratones , Neisseria meningitidis/genética , Neisseria meningitidis/crecimiento & desarrollo , Fenotiazinas/farmacología , Piel/patología , Trasplante de Piel , ATPasa Intercambiadora de Sodio-Potasio , Trifluoperazina/farmacología
18.
J Bacteriol ; 190(23): 7859-63, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18805974

RESUMEN

Carotenoids are complex lipids that are known for acting against photodynamic injury and free radicals. We demonstrate here that sigma(F) is required for carotenoid pigment production in Mycobacterium smegmatis. We further show that a sigF mutant exhibits a transformation efficiency 10(4)-fold higher than that of the parental strain, suggesting that sigma(F) regulates the production of components affecting cell wall permeability. In addition, a sigF mutant showed an increased sensitivity to hydrogen peroxide. An in silico search of the M. smegmatis genome identified a number of SigF consensus sites, including sites upstream of the carotenoid synthesis locus, which explains its SigF regulation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Carotenoides/biosíntesis , Peróxido de Hidrógeno/farmacología , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/metabolismo , Oxidantes/farmacología , Factor sigma/metabolismo , Elementos Transponibles de ADN/genética , Regulación Bacteriana de la Expresión Génica , Mutagénesis Insercional
19.
BMC Evol Biol ; 8: 78, 2008 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-18325090

RESUMEN

BACKGROUND: Computer-assisted analyses have shown that all bacterial genomes contain a small percentage of open reading frames with a frameshift or in-frame stop codon We report here a comparative analysis of these interrupted coding sequences (ICDSs) in six isolates of M. tuberculosis, two of M. bovis and one of M. africanum and question their phenotypic impact and evolutionary significance. RESULTS: ICDSs were classified as "common to all strains" or "strain-specific". Common ICDSs are believed to result from mutations acquired before the divergence of the species, whereas strain-specific ICDSs were acquired after this divergence. Comparative analyses of these ICDSs therefore define the molecular signature of a particular strain, phylogenetic lineage or species, which may be useful for inferring phenotypic traits such as virulence and molecular relationships. For instance, in silico analysis of the W-Beijing lineage of M. tuberculosis, an emergent family involved in several outbreaks, is readily distinguishable from other phyla by its smaller number of common ICDSs, including at least one known to be associated with virulence. Our observation was confirmed through the sequencing analysis of ICDSs in a panel of 21 clinical M. tuberculosis strains. This analysis further illustrates the divergence of the W-Beijing lineage from other phyla in terms of the number of full-length ORFs not containing a frameshift. We further show that ICDS formation is not associated with the presence of a mutated promoter, and suggest that promoter extinction is not the main cause of pseudogene formation. CONCLUSION: The correlation between ICDSs, function and phenotypes could have important evolutionary implications. This study provides population geneticists with a list of targets, which could undergo selective pressure and thus alters relationships between the various lineages of M. tuberculosis strains and their host. This approach could be applied to any closely related bacterial strains or species for which several genome sequences are available.


Asunto(s)
ADN Bacteriano/genética , Evolución Molecular , Mycobacterium bovis/genética , Mycobacterium tuberculosis/genética , Sistemas de Lectura Abierta , Técnicas de Tipificación Bacteriana , Mutación del Sistema de Lectura , Genoma Bacteriano , Mycobacterium bovis/clasificación , Mycobacterium tuberculosis/clasificación , Filogenia , Análisis de Secuencia de ADN , Especificidad de la Especie
20.
Virulence ; 8(8): 1808-1819, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-29099305

RESUMEN

Neisseria meningitidis is the causative agent of cerebrospinal meningitis and that of a rapidly progressing fatal septic shock known as purpura fulminans. Meningococcemia is characterized by bacterial adhesion to human endothelial cells of the microvessels. Host specificity has hampered studies on the role of blood vessels colonization in N. meningitidis associated pathogenesis. In this work, using a humanized model of SCID mice allowing the study of bacterial adhesion to human cells in an in vivo context we demonstrate that meningococcal colonization of human blood vessels is a prerequisite to the establishment of sepsis and lethality. To identify the molecular pathways involved in bacterial virulence, we performed transposon insertion site sequencing (Tn-seq) in vivo. Our results demonstrate that 36% of the genes that are important for growth in the blood of mice are dispensable when bacteria colonize human blood vessels, suggesting that human endothelial cells lining the blood vessels are feeding niches for N. meningitidis in vivo. Altogether, our work proposes a new paradigm for meningococcal virulence in which colonization of blood vessels is associated with metabolic adaptation and sustained bacteremia responsible for sepsis and subsequent lethality.


Asunto(s)
Bacteriemia/microbiología , Infecciones Meningocócicas/sangre , Infecciones Meningocócicas/microbiología , Microvasos/microbiología , Neisseria meningitidis/fisiología , Animales , Bacteriemia/sangre , Adhesión Bacteriana , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones SCID , Neisseria meningitidis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA