Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 55(4): 606-622.e6, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35358427

RESUMEN

Lymph node (LN) stromal cells play a crucial role in LN development and in supporting adaptive immune responses. However, their origin, differentiation pathways, and transcriptional programs are still elusive. Here, we used lineage-tracing approaches and single-cell transcriptome analyses to determine origin, transcriptional profile, and composition of LN stromal and endothelial progenitors. Our results showed that all major stromal cell subsets and a large proportion of blood endothelial cells originate from embryonic Hoxb6+ progenitors of the lateral plate mesoderm (LPM), whereas lymphatic endothelial cells arise from Pax3+ progenitors of the paraxial mesoderm (PXM). Single-cell RNA sequencing revealed the existence of different Cd34+ and Cxcl13+ stromal cell subsets and showed that embryonic LNs contain proliferating progenitors possibly representing the amplifying populations for terminally differentiated cells. Taken together, our work identifies the earliest embryonic sources of LN stromal and endothelial cells and demonstrates that stromal diversity begins already during LN development.


Asunto(s)
Células Endoteliales , Células Endoteliales/metabolismo , Ganglios Linfáticos , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Células del Estroma , Factores de Transcripción/metabolismo
2.
Nature ; 627(8005): 854-864, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38480880

RESUMEN

The heart, which is the first organ to develop, is highly dependent on its form to function1,2. However, how diverse cardiac cell types spatially coordinate to create the complex morphological structures that are crucial for heart function remains unclear. Here we integrated single-cell RNA-sequencing with high-resolution multiplexed error-robust fluorescence in situ hybridization to resolve the identity of the cardiac cell types that develop the human heart. This approach also provided a spatial mapping of individual cells that enables illumination of their organization into cellular communities that form distinct cardiac structures. We discovered that many of these cardiac cell types further specified into subpopulations exclusive to specific communities, which support their specialization according to the cellular ecosystem and anatomical region. In particular, ventricular cardiomyocyte subpopulations displayed an unexpected complex laminar organization across the ventricular wall and formed, with other cell subpopulations, several cellular communities. Interrogating cell-cell interactions within these communities using in vivo conditional genetic mouse models and in vitro human pluripotent stem cell systems revealed multicellular signalling pathways that orchestrate the spatial organization of cardiac cell subpopulations during ventricular wall morphogenesis. These detailed findings into the cellular social interactions and specialization of cardiac cell types constructing and remodelling the human heart offer new insights into structural heart diseases and the engineering of complex multicellular tissues for human heart repair.


Asunto(s)
Tipificación del Cuerpo , Corazón , Miocardio , Animales , Humanos , Ratones , Corazón/anatomía & histología , Corazón/embriología , Cardiopatías/metabolismo , Cardiopatías/patología , Ventrículos Cardíacos/anatomía & histología , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/embriología , Hibridación Fluorescente in Situ , Modelos Animales , Miocardio/citología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Análisis de Expresión Génica de una Sola Célula
3.
Cell ; 150(3): 590-605, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22863011

RESUMEN

Endothelium in embryonic hematopoietic tissues generates hematopoietic stem/progenitor cells; however, it is unknown how its unique potential is specified. We show that transcription factor Scl/Tal1 is essential for both establishing the hematopoietic transcriptional program in hemogenic endothelium and preventing its misspecification to a cardiomyogenic fate. Scl(-/-) embryos activated a cardiac transcriptional program in yolk sac endothelium, leading to the emergence of CD31+Pdgfrα+ cardiogenic precursors that generated spontaneously beating cardiomyocytes. Ectopic cardiogenesis was also observed in Scl(-/-) hearts, where the disorganized endocardium precociously differentiated into cardiomyocytes. Induction of mosaic deletion of Scl in Scl(fl/fl)Rosa26Cre-ER(T2) embryos revealed a cell-intrinsic, temporal requirement for Scl to prevent cardiomyogenesis from endothelium. Scl(-/-) endothelium also upregulated the expression of Wnt antagonists, which promoted rapid cardiomyocyte differentiation of ectopic cardiogenic cells. These results reveal unexpected plasticity in embryonic endothelium such that loss of a single master regulator can induce ectopic cardiomyogenesis from endothelial cells.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Endotelio Vascular/embriología , Corazón/embriología , Proteínas Proto-Oncogénicas/metabolismo , Animales , Cadherinas/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Hemangioblastos , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Mesodermo/metabolismo , Ratones , Miocitos Cardíacos/citología , Placenta/irrigación sanguínea , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Embarazo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proteína 1 de la Leucemia Linfocítica T Aguda , Factores de Transcripción/metabolismo , Saco Vitelino/irrigación sanguínea
4.
Circ Res ; 134(7): 913-930, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38414132

RESUMEN

BACKGROUND: Recently shown to regulate cardiac development, the secreted axon guidance molecule SLIT3 maintains its expression in the postnatal heart. Despite its known expression in the cardiovascular system after birth, SLIT3's relevance to cardiovascular function in the postnatal state remains unknown. As such, the objectives of this study were to determine the postnatal myocardial sources of SLIT3 and to evaluate its functional role in regulating the cardiac response to pressure overload stress. METHODS: We performed in vitro studies on cardiomyocytes and myocardial tissue samples from patients and performed in vivo investigation with SLIT3 and ROBO1 (roundabout homolog 1) mutant mice undergoing transverse aortic constriction to establish the role of SLIT3-ROBO1 in adverse cardiac remodeling. RESULTS: We first found that SLIT3 transcription was increased in myocardial tissue obtained from patients with congenital heart defects that caused ventricular pressure overload. Immunostaining of hearts from WT (wild-type) and reporter mice revealed that SLIT3 is secreted by cardiac stromal cells, namely fibroblasts and vascular mural cells, within the heart. Conditioned media from cardiac fibroblasts and vascular mural cells both stimulated cardiomyocyte hypertrophy in vitro, an effect that was partially inhibited by an anti-SLIT3 antibody. Also, the N-terminal, but not the C-terminal, fragment of SLIT3 and the forced overexpression of SLIT3 stimulated cardiomyocyte hypertrophy and the transcription of hypertrophy-related genes. We next determined that ROBO1 was the most highly expressed roundabout receptor in cardiomyocytes and that ROBO1 mediated SLIT3's hypertrophic effects in vitro. In vivo, Tcf21+ fibroblast and Tbx18+ vascular mural cell-specific knockout of SLIT3 in mice resulted in decreased left ventricular hypertrophy and cardiac fibrosis after transverse aortic constriction. Furthermore, α-MHC+ cardiomyocyte-specific deletion of ROBO1 also preserved left ventricular function and abrogated hypertrophy, but not fibrosis, after transverse aortic constriction. CONCLUSIONS: Collectively, these results indicate a novel role for the SLIT3-ROBO1-signaling axis in regulating postnatal cardiomyocyte hypertrophy induced by pressure overload.


Asunto(s)
Miocitos Cardíacos , Proteínas del Tejido Nervioso , Animales , Humanos , Ratones , Cardiomegalia/genética , Cardiomegalia/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Fibrosis , Hipertrofia Ventricular Izquierda/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Remodelación Ventricular
5.
PLoS Genet ; 19(1): e1010630, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36706168

RESUMEN

FLNC, encoding filamin C, is one of the most mutated genes in dilated and hypertrophic cardiomyopathy. However, the precise role of filamin C in mammalian heart remains unclear. In this study, we demonstrated Flnc global (FlncgKO) and cardiomyocyte-specific knockout (FlnccKO) mice died in utero from severely ruptured ventricular myocardium, indicating filamin C is required to maintain the structural integrity of myocardium in the mammalian heart. Contrary to the common belief that filamin C acts as an integrin inactivator, we observed attenuated activation of ß1 integrin specifically in the myocardium of FlncgKO mice. Although deleting ß1 integrin from cardiomyocytes did not recapitulate the heart rupture phenotype in Flnc knockout mice, deleting both ß1 integrin and filamin C from cardiomyocytes resulted in much more severe heart ruptures than deleting filamin C alone. Our results demonstrated that filamin C works in concert with ß1 integrin to maintain the structural integrity of myocardium during mammalian heart development.


Asunto(s)
Filaminas , Integrina beta1 , Miocardio , Animales , Ratones , Cardiomiopatía Hipertrófica , Filaminas/genética , Integrina beta1/genética , Miocitos Cardíacos
6.
Hum Mol Genet ; 31(24): 4217-4227, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-35899771

RESUMEN

Ets1 deletion in some mouse strains causes septal defects and has been implicated in human congenital heart defects in Jacobsen syndrome, in which one copy of the Ets1 gene is missing. Here, we demonstrate that loss of Ets1 in mice results in a decrease in neural crest (NC) cells migrating into the proximal outflow tract cushions during early heart development, with subsequent malalignment of the cushions relative to the muscular ventricular septum, resembling double outlet right ventricle (DORV) defects in humans. Consistent with this, we find that cultured cardiac NC cells from Ets1 mutant mice or derived from iPS cells from Jacobsen patients exhibit decreased migration speed and impaired cell-to-cell interactions. Together, our studies demonstrate a critical role for ETS1 for cell migration in cardiac NC cells that are required for proper formation of the proximal outflow tracts. These data provide further insights into the molecular and cellular basis for development of the outflow tracts, and how perturbation of NC cells can lead to DORV.


Asunto(s)
Cardiopatías Congénitas , Cresta Neural , Proteína Proto-Oncogénica c-ets-1 , Animales , Humanos , Ratones , Movimiento Celular/genética , Corazón , Organogénesis , Proteína Proto-Oncogénica c-ets-1/genética
7.
PLoS Genet ; 17(9): e1009785, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34506481

RESUMEN

Dysregulation of cardiac transcription programs has been identified in patients and families with heart failure, as well as those with morphological and functional forms of congenital heart defects. Mediator is a multi-subunit complex that plays a central role in transcription initiation by integrating regulatory signals from gene-specific transcriptional activators to RNA polymerase II (Pol II). Recently, Mediator subunit 30 (MED30), a metazoan specific Mediator subunit, has been associated with Langer-Giedion syndrome (LGS) Type II and Cornelia de Lange syndrome-4 (CDLS4), characterized by several abnormalities including congenital heart defects. A point mutation in MED30 has been identified in mouse and is associated with mitochondrial cardiomyopathy. Very recent structural analyses of Mediator revealed that MED30 localizes to the proximal Tail, anchoring Head and Tail modules, thus potentially influencing stability of the Mediator core. However, in vivo cellular and physiological roles of MED30 in maintaining Mediator core integrity remain to be tested. Here, we report that deletion of MED30 in embryonic or adult cardiomyocytes caused rapid development of cardiac defects and lethality. Importantly, cardiomyocyte specific ablation of MED30 destabilized Mediator core subunits, while the kinase module was preserved, demonstrating an essential role of MED30 in stability of the overall Mediator complex. RNAseq analyses of constitutive cardiomyocyte specific Med30 knockout (cKO) embryonic hearts and inducible cardiomyocyte specific Med30 knockout (icKO) adult cardiomyocytes further revealed critical transcription networks in cardiomyocytes controlled by Mediator. Taken together, our results demonstrated that MED30 is essential for Mediator stability and transcriptional networks in both developing and adult cardiomyocytes. Our results affirm the key role of proximal Tail modular subunits in maintaining core Mediator stability in vivo.


Asunto(s)
Complejo Mediador/metabolismo , Miocitos Cardíacos/metabolismo , Transcripción Genética , Animales , Femenino , Masculino , Complejo Mediador/genética , Complejo Mediador/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
8.
J Mol Cell Cardiol ; 175: 44-48, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36539111

RESUMEN

Mitochondrial dysfunction in heart triggers an integrated stress response (ISR) through phosphorylation of eIF2α and subsequent ATF4 activation. DAP3 Binding Cell Death Enhancer 1 (DELE1) is a mitochondrial protein recently found to be critical for mediating mitochondrial stress-triggered ISR (MSR)-induced eIF2α-ATF4 pathway activation. However, the specific role of DELE1 in heart at baseline or in response to mitochondrial stress remains largely unknown. In this study, we report that DELE1 is dispensable for cardiac development and function under baseline conditions. Conversely, DELE1 is essential for mediating an adaptive response to mitochondrial dysfunction-triggered stress in the heart, playing a protective role in mitochondrial cardiomyopathy.


Asunto(s)
Cardiomiopatías , Mitocondrias , Humanos , Fosforilación , Mitocondrias/genética , Mitocondrias/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/metabolismo
9.
Circulation ; 145(8): 586-602, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-34915728

RESUMEN

BACKGROUND: Left ventricular noncompaction cardiomyopathy (LVNC) was discovered half a century ago as a cardiomyopathy with excessive trabeculation and a thin ventricular wall. In the decades since, numerous studies have demonstrated that LVNC primarily has an effect on left ventricles (LVs) and is often associated with LV dilation and dysfunction. However, in part because of the lack of suitable mouse models that faithfully mirror the selective LV vulnerability in patients, mechanisms underlying the susceptibility of LVs to dilation and dysfunction in LVNC remain unknown. Genetic studies have revealed that deletions and mutations in PRDM16 (PR domain-containing 16) cause LVNC, but previous conditional Prdm16 knockout mouse models do not mirror the LVNC phenotype in patients, and the underlying molecular mechanisms by which PRDM16 deficiency causes LVNC are still unclear. METHODS: Prdm16 cardiomyocyte-specific knockout (Prdm16cKO) mice were generated and analyzed for cardiac phenotypes. RNA sequencing and chromatin immunoprecipitation deep sequencing were performed to identify direct transcriptional targets of PRDM16 in cardiomyocytes. Single-cell RNA sequencing in combination with spatial transcriptomics was used to determine cardiomyocyte identity at the single-cell level. RESULTS: Cardiomyocyte-specific ablation of Prdm16 in mice caused LV-specific dilation and dysfunction, as well as biventricular noncompaction, which fully recapitulated LVNC in patients. PRDM16 functioned mechanistically as a compact myocardium-enriched transcription factor that activated compact myocardial genes while repressing trabecular myocardial genes in LV compact myocardium. Consequently, Prdm16cKO LV compact myocardial cardiomyocytes shifted from their normal transcriptomic identity to a transcriptional signature resembling trabecular myocardial cardiomyocytes or neurons. Chamber-specific transcriptional regulation by PRDM16 was attributable in part to its cooperation with LV-enriched transcription factors Tbx5 and Hand1. CONCLUSIONS: These results demonstrate that disruption of proper specification of compact cardiomyocytes may play a key role in the pathogenesis of LVNC. They also shed light on underlying mechanisms of the LV-restricted transcriptional program governing LV chamber growth and maturation, providing a tangible explanation for the susceptibility of LV in a subset of LVNC cardiomyopathies.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Ventrículos Cardíacos/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al ADN/genética , Ratones , Ratones Noqueados , Factores de Transcripción/genética
10.
Circulation ; 146(22): 1694-1711, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36317529

RESUMEN

BACKGROUND: The sinoatrial node (SAN) functions as the pacemaker of the heart, initiating rhythmic heartbeats. Despite its importance, the SAN is one of the most poorly understood cardiac entities because of its small size and complex composition and function. The Hippo signaling pathway is a molecular signaling pathway fundamental to heart development and regeneration. Although abnormalities of the Hippo pathway are associated with cardiac arrhythmias in human patients, the role of this pathway in the SAN is unknown. METHODS: We investigated key regulators of the Hippo pathway in SAN pacemaker cells by conditionally inactivating the Hippo signaling kinases Lats1 and Lats2 using the tamoxifen-inducible, cardiac conduction system-specific Cre driver Hcn4CreERT2 with Lats1 and Lats2 conditional knockout alleles. In addition, the Hippo-signaling effectors Yap and Taz were conditionally inactivated in the SAN. To determine the function of Hippo signaling in the SAN and other cardiac conduction system components, we conducted a series of physiological and molecular experiments, including telemetry ECG recording, echocardiography, Masson Trichrome staining, calcium imaging, immunostaining, RNAscope, cleavage under targets and tagmentation sequencing using antibodies against Yap1 or H3K4me3, quantitative real-time polymerase chain reaction, and Western blotting. We also performed comprehensive bioinformatics analyses of various datasets. RESULTS: We found that Lats1/2 inactivation caused severe sinus node dysfunction. Compared with the controls, Lats1/2 conditional knockout mutants exhibited dysregulated calcium handling and increased fibrosis in the SAN, indicating that Lats1/2 function through both cell-autonomous and non-cell-autonomous mechanisms. It is notable that the Lats1/2 conditional knockout phenotype was rescued by genetic deletion of Yap and Taz in the cardiac conduction system. These rescued mice had normal sinus rhythm and reduced fibrosis of the SAN, indicating that Lats1/2 function through Yap and Taz. Cleavage Under Targets and Tagmentation sequencing data showed that Yap potentially regulates genes critical for calcium homeostasis such as Ryr2 and genes encoding paracrine factors important in intercellular communication and fibrosis induction such as Tgfb1 and Tgfb3. Consistent with this, Lats1/2 conditional knockout mutants had decreased Ryr2 expression and increased Tgfb1 and Tgfb3 expression compared with control mice. CONCLUSIONS: We reveal, for the first time to our knowledge, that the canonical Hippo-Yap pathway plays a pivotal role in maintaining SAN homeostasis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas de Ciclo Celular , Humanos , Ratones , Animales , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Factor de Crecimiento Transformador beta3/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Nodo Sinoatrial/metabolismo , Calcio/metabolismo , Canal Liberador de Calcio Receptor de Rianodina , Proteínas Serina-Treonina Quinasas/genética , Homeostasis , Fibrosis , Proliferación Celular , Proteínas Supresoras de Tumor
12.
Nature ; 552(7683): 110-115, 2017 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-29160304

RESUMEN

Fibrosis is a common pathology in cardiovascular disease. In the heart, fibrosis causes mechanical and electrical dysfunction and in the kidney, it predicts the onset of renal failure. Transforming growth factor ß1 (TGFß1) is the principal pro-fibrotic factor, but its inhibition is associated with side effects due to its pleiotropic roles. We hypothesized that downstream effectors of TGFß1 in fibroblasts could be attractive therapeutic targets and lack upstream toxicity. Here we show, using integrated imaging-genomics analyses of primary human fibroblasts, that upregulation of interleukin-11 (IL-11) is the dominant transcriptional response to TGFß1 exposure and required for its pro-fibrotic effect. IL-11 and its receptor (IL11RA) are expressed specifically in fibroblasts, in which they drive non-canonical, ERK-dependent autocrine signalling that is required for fibrogenic protein synthesis. In mice, fibroblast-specific Il11 transgene expression or Il-11 injection causes heart and kidney fibrosis and organ failure, whereas genetic deletion of Il11ra1 protects against disease. Therefore, inhibition of IL-11 prevents fibroblast activation across organs and species in response to a range of important pro-fibrotic stimuli. These results reveal a central role of IL-11 in fibrosis and we propose that inhibition of IL-11 is a potential therapeutic strategy to treat fibrotic diseases.


Asunto(s)
Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/patología , Fibrosis/metabolismo , Fibrosis/patología , Interleucina-11/metabolismo , Animales , Comunicación Autocrina , Células Cultivadas , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis/inducido químicamente , Corazón , Humanos , Interleucina-11/antagonistas & inhibidores , Interleucina-11/genética , Subunidad alfa del Receptor de Interleucina-11/deficiencia , Subunidad alfa del Receptor de Interleucina-11/genética , Riñón/patología , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Miocardio/metabolismo , Miocardio/patología , Puntuaciones en la Disfunción de Órganos , Biosíntesis de Proteínas , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Transgenes/genética
13.
PLoS Genet ; 16(4): e1008730, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32251422

RESUMEN

O-linked N-acetylglucosamine (GlcNAc) transferase (OGT) is the only enzyme catalyzing O-GlcNAcylation. Although it has been shown that OGT plays an essential role in maintaining postnatal heart function, its role in heart development remains unknown. Here we showed that loss of OGT in early fetal cardiomyocytes led to multiple heart developmental defects including hypertrabeculation, biventricular dilation, atrial septal defects, ventricular septal defects, and defects in coronary vessel development. In addition, RNA sequencing revealed that Angiopoietin-1, required within cardiomyocytes for both myocardial and coronary vessel development, was dramatically downregulated in cardiomyocyte-specific OGT knockout mouse hearts. In conclusion, our data demonstrated that OGT plays an essential role in regulating heart development through activating expression of cardiomyocyte Angiopoietin-1.


Asunto(s)
Corazón/embriología , Miocitos Cardíacos/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Angiopoyetina 1/genética , Angiopoyetina 1/metabolismo , Animales , Células Cultivadas , Corazón/fisiología , Ratones , Ratones Endogámicos C57BL , N-Acetilglucosaminiltransferasas/genética
14.
Proc Natl Acad Sci U S A ; 117(13): 7418-7429, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32170006

RESUMEN

The striatal complex of basal ganglia comprises two functionally distinct districts. The dorsal district controls motor and cognitive functions. The ventral district regulates the limbic function of motivation, reward, and emotion. The dorsoventral parcellation of the striatum also is of clinical importance as differential striatal pathophysiologies occur in Huntington's disease, Parkinson's disease, and drug addiction disorders. Despite these striking neurobiologic contrasts, it is largely unknown how the dorsal and ventral divisions of the striatum are set up. Here, we demonstrate that interactions between the two key transcription factors Nolz-1 and Dlx1/2 control the migratory paths of striatal neurons to the dorsal or ventral striatum. Moreover, these same transcription factors control the cell identity of striatal projection neurons in both the dorsal and the ventral striata including the D1-direct and D2-indirect pathways. We show that Nolz-1, through the I12b enhancer, represses Dlx1/2, allowing normal migration of striatal neurons to dorsal and ventral locations. We demonstrate that deletion, up-regulation, and down-regulation of Nolz-1 and Dlx1/2 can produce a striatal phenotype characterized by a withered dorsal striatum and an enlarged ventral striatum and that we can rescue this phenotype by manipulating the interactions between Nolz-1 and Dlx1/2 transcription factors. Our study indicates that the two-tier system of striatal complex is built by coupling of cell-type identity and migration and suggests that the fundamental basis for divisions of the striatum known to be differentially vulnerable at maturity is already encoded by the time embryonic striatal neurons begin their migrations into developing striata.


Asunto(s)
Ganglios Basales/citología , Cuerpo Estriado/citología , Estriado Ventral/citología , Animales , Ganglios Basales/metabolismo , Diferenciación Celular , Cuerpo Estriado/metabolismo , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Interneuronas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Núcleo Accumbens/citología , Núcleo Accumbens/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Estriado Ventral/metabolismo
15.
Immunity ; 38(4): 782-91, 2013 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-23601687

RESUMEN

Secondary lymphoid organ stromal cells comprise different subsets whose origins remain unknown. Herein, we exploit a genetic lineage-tracing approach to show that splenic fibroblastic reticular cells (FRCs), follicular dendritic cells (FDCs), marginal reticular cells (MRCs), and mural cells, but not endothelial cells, originate from embryonic mesenchymal progenitors of the Nkx2-5(+)Islet1(+) lineage. This lineage include embryonic mesenchymal cells with lymphoid tissue organizer (LTo) activity capable also of supporting ectopic lymphoid-like structures and a subset of resident spleen stromal cells that proliferate and regenerate the splenic stromal microenvironment following resolution of a viral infection. These findings identify progenitor cells that generate stromal diversity in spleen development and repair and suggest the existence of multipotent stromal progenitors in the adult spleen with regenerative capacity.


Asunto(s)
Células Dendríticas Foliculares/metabolismo , Fibroblastos/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/fisiología , Bazo/patología , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Células Dendríticas Foliculares/patología , Fibroblastos/patología , Proteína Homeótica Nkx-2.5 , Coriomeningitis Linfocítica/fisiopatología , Células Madre Mesenquimatosas/patología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Regeneración , Células del Estroma/metabolismo , Células del Estroma/patología
16.
Proc Natl Acad Sci U S A ; 116(37): 18423-18428, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31444302

RESUMEN

During prophase I of meiosis, chromosomes become organized as loop arrays around the proteinaceous chromosome axis. As homologous chromosomes physically pair and recombine, the chromosome axis is integrated into the tripartite synaptonemal complex (SC) as this structure's lateral elements (LEs). While the components of the mammalian chromosome axis/LE-including meiosis-specific cohesin complexes, the axial element proteins SYCP3 and SYCP2, and the HORMA domain proteins HORMAD1 and HORMAD2-are known, the molecular organization of these components within the axis is poorly understood. Here, using expansion microscopy coupled with 2-color stochastic optical reconstruction microscopy (STORM) imaging (ExSTORM), we address these issues in mouse spermatocytes at a resolution of 10 to 20 nm. Our data show that SYCP3 and the SYCP2 C terminus, which are known to form filaments in vitro, form a compact core around which cohesin complexes, HORMADs, and the N terminus of SYCP2 are arrayed. Overall, our study provides a detailed structural view of the meiotic chromosome axis, a key organizational and regulatory component of meiotic chromosomes.


Asunto(s)
Cromosomas de los Mamíferos/química , Cromosomas de los Mamíferos/metabolismo , Microscopía/métodos , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Masculino , Mamíferos/genética , Meiosis , Ratones , Espermatocitos/metabolismo , Coloración y Etiquetado , Complejo Sinaptonémico/metabolismo
17.
Development ; 145(18)2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-30111655

RESUMEN

In vivo genomic engineering is instrumental for studying developmental biology and regenerative medicine. Development of novel systems with more site-specific recombinases (SSRs) that complement with the commonly used Cre-loxP would be valuable for more precise lineage tracing and genome editing. Here, we introduce a new SSR system via Nigri-nox. By generating tissue-specific Nigri knock-in and its responding nox reporter mice, we show that the Nigri-nox system works efficiently in vivo by targeting specific tissues. As a new orthogonal system to Cre-loxP, Nigri-nox provides an additional control of genetic manipulation. We also demonstrate how the two orthogonal systems Nigri-nox and Cre-loxP could be used simultaneously to map the cell fate of two distinct developmental origins of cardiac valve mesenchyme in the mouse heart, providing dynamics of cellular contribution from different origins for cardiac valve mesenchyme during development. This work provides a proof-of-principle application of the Nigri-nox system for in vivo mouse genomic engineering. Coupled with other SSR systems, Nigri-nox would be valuable for more precise delineation of origins and cell fates during development, diseases and regeneration.


Asunto(s)
ADN Nucleotidiltransferasas/metabolismo , Ingeniería Genética/métodos , Válvulas Cardíacas/embriología , Mesodermo/embriología , Animales , Antígenos CD/metabolismo , Sistemas CRISPR-Cas/genética , Cadherinas/metabolismo , Células Endoteliales/citología , Técnicas de Sustitución del Gen , Ratones , Ratones Endogámicos C57BL
19.
Circulation ; 140(1): 55-66, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-30982350

RESUMEN

BACKGROUND: Membrane contact sites are fundamental for transmission and translation of signals in multicellular organisms. The junctional membrane complexes in the cardiac dyads, where transverse (T) tubules are juxtaposed to the sarcoplasmic reticulum, are a prime example. T-tubule uncoupling and remodeling are well-known features of cardiac disease and heart failure. Even subtle alterations in the association between T-tubules and the junctional sarcoplasmic reticulum can cause serious cardiac disorders. NEXN (nexilin) has been identified as an actin-binding protein, and multiple mutations in the NEXN gene are associated with cardiac diseases, but the precise role of NEXN in heart function and disease is still unknown. METHODS: Nexn global and cardiomyocyte-specific knockout mice were generated. Comprehensive phenotypic and RNA sequencing and mass spectrometry analyses were performed. Heart tissue samples and isolated single cardiomyocytes were analyzed by electron and confocal microscopy. RESULTS: Global and cardiomyocyte-specific loss of Nexn in mice resulted in a rapidly progressive dilated cardiomyopathy. In vivo and in vitro analyses revealed that NEXN interacted with junctional sarcoplasmic reticulum proteins, was essential for optimal calcium transients, and was required for initiation of T-tubule invagination and formation. CONCLUSIONS: These results demonstrated that NEXN is a pivotal component of the junctional membrane complex and is required for initiation and formation of T-tubules, thus providing insight into mechanisms underlying cardiomyopathy in patients with mutations in NEXN.


Asunto(s)
Cardiomiopatía Dilatada/metabolismo , Membrana Celular/metabolismo , Uniones Intercelulares/metabolismo , Proteínas de Microfilamentos/deficiencia , Fibras Musculares Esqueléticas/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Canales de Calcio Tipo L/metabolismo , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Membrana Celular/genética , Membrana Celular/patología , Células Cultivadas , Uniones Intercelulares/genética , Uniones Intercelulares/patología , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas de Microfilamentos/genética , Fibras Musculares Esqueléticas/patología , Miocitos Cardíacos/patología
20.
Circ Res ; 123(4): 428-442, 2018 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-29903739

RESUMEN

RATIONALE: Mutations in the transcription factor TBX20 (T-box 20) are associated with congenital heart disease. Germline ablation of Tbx20 results in abnormal heart development and embryonic lethality by embryonic day 9.5. Because Tbx20 is expressed in multiple cell lineages required for myocardial development, including pharyngeal endoderm, cardiogenic mesoderm, endocardium, and myocardium, the cell type-specific requirement for TBX20 in early myocardial development remains to be explored. OBJECTIVE: Here, we investigated roles of TBX20 in midgestation cardiomyocytes for heart development. METHODS AND RESULTS: Ablation of Tbx20 from developing cardiomyocytes using a doxycycline inducible cTnTCre transgene led to embryonic lethality. The circumference of developing ventricular and atrial chambers, and in particular that of prospective left atrium, was significantly reduced in Tbx20 conditional knockout mutants. Cell cycle analysis demonstrated reduced proliferation of Tbx20 mutant cardiomyocytes and their arrest at the G1-S phase transition. Genome-wide transcriptome analysis of mutant cardiomyocytes revealed differential expression of multiple genes critical for cell cycle regulation. Moreover, atrial and ventricular gene programs seemed to be aberrantly regulated. Putative direct TBX20 targets were identified using TBX20 ChIP-Seq (chromatin immunoprecipitation with high throughput sequencing) from embryonic heart and included key cell cycle genes and atrial and ventricular specific genes. Notably, TBX20 bound a conserved enhancer for a gene key to atrial development and identity, COUP-TFII/Nr2f2 (chicken ovalbumin upstream promoter transcription factor 2/nuclear receptor subfamily 2, group F, member 2). This enhancer interacted with the NR2F2 promoter in human cardiomyocytes and conferred atrial specific gene expression in a transgenic mouse in a TBX20-dependent manner. CONCLUSIONS: Myocardial TBX20 directly regulates a subset of genes required for fetal cardiomyocyte proliferation, including those required for the G1-S transition. TBX20 also directly downregulates progenitor-specific genes and, in addition to regulating genes that specify chamber versus nonchamber myocardium, directly activates genes required for establishment or maintenance of atrial and ventricular identity. TBX20 plays a previously unappreciated key role in atrial development through direct regulation of an evolutionarily conserved COUPT-FII enhancer.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Atrios Cardíacos/embriología , Miocitos Cardíacos/metabolismo , Proteínas de Dominio T Box/genética , Animales , Línea Celular , Proliferación Celular , Células Cultivadas , Fase G1 , Atrios Cardíacos/citología , Atrios Cardíacos/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutación , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Fase S , Proteínas de Dominio T Box/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA