Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proteomics ; 21(13-14): e2000091, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33870651

RESUMEN

Spectrin is a ubiquitous cytoskeletal protein that provides structural stability and supports membrane integrity. In erythrocytes, spectrin proteolysis leads to the biogenesis of plasma membrane extracellular vesicles (EVs). However, its role in non-erythroid or cancer-derived plasma membrane EVs biogenesis is unknown. This study aims to examine the role of αII-spectrin in malignant and non-malignant plasma membrane vesiculation. We developed a custom, automated cell segmentation plugin for the image processor, Fiji, that provides an unbiased assessment of high resolution confocal microscopy images of the subcellular distribution of αII-spectrin. We show that, in low vesiculating non-malignant MBE-F breast cells, prominent cortical spectrin localises to the cell periphery at rest. In comparison, cortical spectrin is diminished in high vesiculating malignant MCF-7 breast cells at rest. A cortical distribution of spectrin correlates with increased biomechanical stiffness as measured by Atomic Force Microscopy. Furthermore, cortical spectrin can be induced in malignant MCF-7 cells by treatment with known vesiculation modulators including the calcium chelator, BAPTA-AM or the calpain inhibitor II (ALLM). These results demonstrate that the subcellular localisation of spectrin is distinctly different in malignant and non-malignant cells at rest and shows that the redistribution of cortical αII-spectrin to the cytoplasm supports plasma membrane-derived EV biogenesis in malignant cells.


Asunto(s)
Vesículas Extracelulares , Espectrina , Citoesqueleto de Actina , Calpaína , Citosol
2.
Int J Mol Sci ; 22(16)2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34445211

RESUMEN

Several poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitors are now in clinical use for tumours with defects in BReast CAncer genes BRCA1 or BRCA2 that result in deficient homologous recombination repair (HRR). Use of olaparib, niraparib or rucaparib for the treatment of high-grade serous ovarian cancer, including in the maintenance setting, has extended both progression free and overall survival for women with this malignancy. While different PARP inhibitors (PARPis) are mechanistically similar, differences are apparent in their chemical structures, toxicity profiles, PARP trapping abilities and polypharmacological landscapes. We have treated ovarian cancer cell line models of known BRCA status, including the paired cell lines PEO1 and PEO4, and UWB1.289 and UWB1.289+BRCA1, with five PARPis (olaparib, niraparib, rucaparib, talazoparib and veliparib) and observed differences between PARPis in both cell viability and cell survival. A cell line model of acquired resistance to veliparib showed increased resistance to the other four PARPis tested, suggesting that acquired resistance to one PARPi may not be able to be rescued by another. Lastly, as a proof of principle, HRR proficient ovarian cancer cells were sensitised to PARPis by depletion of BRCA1. In the future, guidelines will need to emerge to assist clinicians in matching specific PARPis to specific patients and tumours.


Asunto(s)
Proteína BRCA1 , Proteína BRCA2 , Modelos Biológicos , Mutación , Neoplasias Ováricas , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo
3.
J Phycol ; 54(6): 799-810, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29901841

RESUMEN

Land-based plants and ocean-dwelling microbial phototrophs known as phytoplankton, are together responsible for almost all global primary production. Habitat warming associated with anthropogenic climate change has detrimentally impacted marine primary production, with the effects observed on regional and global scales. In contrast to slower-growing higher plants, there is considerable potential for phytoplankton to evolve rapidly with changing environmental conditions. The energetic constraints associated with adaptation in phytoplankton are not yet understood, but are central to forecasting how global biogeochemical cycles respond to contemporary ocean change. Here, we demonstrate a number of potential trade-offs associated with high-temperature adaptation in a tropical microbial eukaryote, Amphidinium massartii (dinoflagellate). Most notably, the population became high-temperature specialized (higher fitness within a narrower thermal envelope and higher thermal optimum), and had a greater nutrient requirement for carbon, nitrogen and phosphorus. Evidently, the energetic constraints associated with living at elevated temperature alter competiveness along other environmental gradients. While high-temperature adaptation led to an irreversible change in biochemical composition (i.e., an increase in fatty acid saturation), the mechanisms underpinning thermal evolution in phytoplankton remain unclear, and will be crucial to understanding whether the trade-offs observed here are species-specific or are representative of the evolutionary constraints in all phytoplankton.


Asunto(s)
Adaptación Biológica , Dinoflagelados/fisiología , Calor , Fitoplancton/fisiología , Cambio Climático , Dinoflagelados/genética , Dinoflagelados/crecimiento & desarrollo , Aptitud Genética , Rasgos de la Historia de Vida , Fitoplancton/genética , Fitoplancton/crecimiento & desarrollo
4.
Funct Plant Biol ; 49(6): 587, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35533098

RESUMEN

Diatoms (Bacillariophyceae) are important to primary productivity of aquatic ecosystems. This algal group is also a valuable source of high value compounds that are utilised as aquaculture feed. The productivity of diatoms is strongly driven by light and CO2 availability, and macro- and micronutrient concentrations. The light dependency of biomass productivity and metabolite composition is well researched in diatoms, but information on the impact of light quality, particularly the productivity return on energy invested when using different monochromatic light sources, remains scarce. In this work, the productivity return on energy invested of improving growth rate, photosynthetic activity, and metabolite productivity of the diatom Chaetoceros muelleri under defined wavelengths (blue, red, and green) as well as while light is analysed. By adjusting the different light qualities to equal photosynthetically utilisable radiation, it was found that the growth rate and photosynthetic oxygen evolution was unchanged under white, blue, and green light, but it was lower under red light. Blue light improved the productivity return on energy invested for biomass, total protein, total lipid, total carbohydrate, and in fatty acids production, which would suggest that blue light should be used for aquaculture feed production.

5.
Funct Plant Biol ; 49(6): 554-564, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34635201

RESUMEN

Diatoms (Bacillariophyceae) are important to primary productivity of aquatic ecosystems. This algal group is also a valuable source of high value compounds that are utilised as aquaculture feed. The productivity of diatoms is strongly driven by light and CO2 availability, and macro- and micronutrient concentrations. The light dependency of biomass productivity and metabolite composition is well researched in diatoms, but information on the impact of light quality, particularly the productivity return on energy invested when using different monochromatic light sources, remains scarce. In this work, the productivity return on energy invested of improving growth rate, photosynthetic activity, and metabolite productivity of the diatom Chaetoceros muelleri under defined wavelengths (blue, red, and green) as well as while light is analysed. By adjusting the different light qualities to equal photosynthetically utilisable radiation, it was found that the growth rate and photosynthetic oxygen evolution was unchanged under white, blue, and green light, but it was lower under red light. Blue light improved the productivity return on energy invested for biomass, total protein, total lipid, total carbohydrate, and in fatty acids production, which would suggest that blue light should be used for aquaculture feed production.


Asunto(s)
Diatomeas , Biomasa , Ecosistema , Ácidos Grasos/análisis , Fotosíntesis
6.
J Phys Chem A ; 115(23): 5992-6001, 2011 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-21309540

RESUMEN

The photodissociation of methyl iodide in the A band is studied by full-dimensional (9D) wave packet dynamics calculations using the multiconfigurational time-dependent Hartree approach. The potential energy surfaces employed are based on the diabatic potentials of Xie et al. [J. Phys. Chem. A 2000, 104, 1009] and the vertical excitation energy is taken from recent ab initio calculations [Alekseyev et al. J. Chem. Phys.2007, 126, 234102]. The absorption spectrum calculated for exclusively parallel excitation agrees well with the experimental spectrum of the A band. The electronic population dynamics is found to be strongly dependent on the motion in the torsional coordinate related to the H(3)-C-I bend, which presumably is an artifact of the diabatic model employed. The calculated fully product state-selected partial spectra can be interpreted based on the reflection principle and suggests strong coupling between the C-I stretching and the H(3)-C-I bending motions during the dissociation process. The computed rotational and vibrational product distributions typically reproduce the trends seen in the experiment. In agreement with experiment, a small but significant excitation of the total symmetric stretching and the asymmetric bending modes of the methyl fragment can be seen. In contrast, the umbrella mode of the methyl is found to be too highly excited in the calculated distributions.


Asunto(s)
Hidrocarburos Yodados/química , Teoría Cuántica , Procesos Fotoquímicos , Factores de Tiempo
7.
J Chem Phys ; 135(22): 224110, 2011 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-22168683

RESUMEN

Simulation of non-adiabatic molecular dynamics requires the description of multiple electronic state potential energy surfaces and their couplings. Ab initio molecular dynamics approaches provide an attractive avenue to accomplish this, but at great computational expense. Interpolation approaches provide a possible route to achieve flexible descriptions of the potential energy surfaces and their couplings at reduced expense. A previously developed approach based on modified Shepard interpolation required global diabatization, which can be problematic. Here, we extensively revise this previous approach, avoiding the need for global diabatization. The resulting interpolated potentials provide only adiabatic energies, gradients, and derivative couplings. This new interpolation approach has been integrated with the ab initio multiple spawning method and it has been rigorously validated against direct dynamics. It is shown that, at least for small molecules, constructing an interpolated PES can be more efficient than performing direct dynamics as measured by the total number of ab initio calculations that are required for a given accuracy.

8.
Nat Microbiol ; 6(5): 594-605, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33903747

RESUMEN

In bacteria, the tubulin homologue FtsZ assembles a cytokinetic ring, termed the Z ring, and plays a key role in the machinery that constricts to divide the cells. Many archaea encode two FtsZ proteins from distinct families, FtsZ1 and FtsZ2, with previously unclear functions. Here, we show that Haloferax volcanii cannot divide properly without either or both FtsZ proteins, but DNA replication continues and cells proliferate in alternative ways, such as blebbing and fragmentation, via remarkable envelope plasticity. FtsZ1 and FtsZ2 colocalize to form the dynamic division ring. However, FtsZ1 can assemble rings independent of FtsZ2, and stabilizes FtsZ2 in the ring, whereas FtsZ2 functions primarily in the constriction mechanism. FtsZ1 also influenced cell shape, suggesting it forms a hub-like platform at midcell for the assembly of shape-related systems too. Both FtsZ1 and FtsZ2 are widespread in archaea with a single S-layer envelope, but archaea with a pseudomurein wall and division septum only have FtsZ1. FtsZ1 is therefore likely to provide a fundamental recruitment role in diverse archaea, and FtsZ2 is required for constriction of a flexible S-layer envelope, where an internal constriction force might dominate the division mechanism, in contrast with the single-FtsZ bacteria and archaea that divide primarily by wall ingrowth.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , División Celular , Haloferax volcanii/citología , Haloferax volcanii/metabolismo , Proteínas Arqueales/genética , Haloferax volcanii/química , Haloferax volcanii/genética , Unión Proteica
9.
J Phys Chem A ; 113(16): 3979-87, 2009 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-19284774

RESUMEN

An extension of the modified Shepard interpolation method is presented that allows expansions for the potential energy using different local coordinate sets to be used in a global interpolation. The coordinates used in a given Taylor expansion are determined using a training set of geometries at which the ab initio potential energy is known and that is built up during the construction of the interpolated potential energy surface. The method is applied to the bound state potential energy surface of methanol and a significant improvement in the rate of convergence of the interpolated potential energy surface to the ab initio potential energy is observed.

10.
J Phys Chem B ; 112(31): 9532-9, 2008 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-18616315

RESUMEN

We report observations of the changes in the surface structure of lysozyme adsorbed at the air-water interface produced by the chemical denaturant guanidinium chloride. A primary result is the durability of the adsorbed surface layer to denaturation, as compared to the molecule in the bulk solution. Data on the surface film were obtained from X-ray and neutron reflectivity measurements and modeled simultaneously. The behavior of lysozyme in G.HCl solutions was determined by small-angle X-ray scattering. For the air-water interface, determination of the adsorbed protein layer dimensions shows that at low to moderate denaturant concentrations (up to 2 mol L(-1)), there is no significant distortion of the protein's tertiary structure at the interface, as changes in the orientation of the protein are sufficient to model data. At higher denaturant concentrations, time-dependent multilayer formation occurred, indicating molecular aggregation at the surface. Methodologies to predict the protein orientation at the interface, based on amino acid residues' surface affinities and charge, were critiqued and validated against our experimental data.


Asunto(s)
Aire , Guanidina , Muramidasa/química , Agua/química , Animales , Pollos , Modelos Moleculares , Muramidasa/metabolismo , Conformación Proteica , Desnaturalización Proteica , Análisis Espectral , Temperatura , Factores de Tiempo
11.
J Chem Phys ; 129(2): 024104, 2008 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-18624513

RESUMEN

A potential energy interpolation approach based on modified Shepard interpolation and specifically designed for calculation of vibrational states is presented. The importance of the choice of coordinates for the rate of convergence is demonstrated. Studying the vibrational states of the water molecule as a test case, a coordinate system comprised of inverse bond distances and trigonometric functions of the bond angle is found to be particularly efficient. Different sampling schemes used to locate the reference points in the modified Shepard interpolation are investigated. A final scheme is recommended, which allows the construction of potential energy surfaces to sub-wave-number accuracy.

12.
J Photochem Photobiol B ; 181: 31-43, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29486460

RESUMEN

This study describes the impacts of inorganic carbon limitation on the photosynthetic efficiency and operation of photosynthetic electron transport pathways in the biofuel-candidate microalga Nannochloropsis oculata. Using a combination of highly-controlled cultivation setup (photobioreactor), variable chlorophyll a fluorescence and transient spectroscopy methods (electrochromic shift (ECS) and P700 redox kinetics), we showed that net photosynthesis and effective quantum yield of Photosystem II (PSII) decreased in N. oculata under carbon limitation. This was accompanied by a transient increase in total proton motive force and energy-dependent non-photochemical quenching as well as slightly elevated respiration. On the other hand, under carbon limitation the rapid increase in proton motive force (PMF, estimated from the total ECS signal) was also accompanied by reduced conductivity of ATP synthase to protons (estimated from the rate of ECS decay in dark after actinic illumination). This indicates that the slow operation of ATP synthase results in the transient build-up of PMF, which leads to the activation of fast energy dissipation mechanisms such as energy-dependent non-photochemical quenching. N. oculata also increased content of lipids under carbon limitation, which compensated for reduced NAPDH consumption during decreased CO2 fixation. The integrated knowledge of the underlying energetic regulation of photosynthetic processes attained with a combination of biophysical methods may be used to identify photo-physiological signatures of the onset of carbon limitation in microalgal cultivation systems, as well as to potentially identify microalgal strains that can better acclimate to carbon limitation.


Asunto(s)
Carbono/metabolismo , Microalgas/metabolismo , Adenosina Trifosfato/metabolismo , Carbono/química , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Transporte de Electrón/efectos de la radiación , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Luz , Microalgas/efectos de la radiación , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Protones , Tilacoides/química , Tilacoides/metabolismo
13.
ChemSusChem ; 8(16): 2727-36, 2015 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-26212226

RESUMEN

This study presents the first in-depth analysis of CO2 limitation on the biomass productivity of the biofuel candidate marine microalga Nannochloropsis oculata. Net photosynthesis decreased by 60% from 125 to 50 µmol O2 L(-1)h(-1) over a 12 h light cycle as a direct result of carbon limitation. Continuous dissolved O2 and pH measurements were used to develop a detailed diurnal mechanism for the interaction between photosynthesis, gas exchange and carbonate chemistry in the photo-bioreactor. Gas exchange determined the degree of carbon limitation experienced by the algae. Carbon limitation was confirmed by delivering more CO2 , which increased net photosynthesis back to its steady-state maximum. This study highlights the importance of maintaining replete carbon concentrations in photo-bioreactors and other culturing facilities, either by constant pH operation or preferably by designing a feedback loop based on the dissolved O2 concentration.


Asunto(s)
Reactores Biológicos , Dióxido de Carbono/metabolismo , Microalgas/metabolismo , Estramenopilos/metabolismo , Biomasa , Carbono/metabolismo , Concentración de Iones de Hidrógeno , Microalgas/crecimiento & desarrollo , Oxígeno/metabolismo , Fotosíntesis , Estramenopilos/crecimiento & desarrollo
14.
Science ; 329(5995): 1057-60, 2010 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-20798315

RESUMEN

Transition state structures are central to the rates and outcomes of chemical reactions, but their fleeting existence often leaves their properties to be inferred rather than observed. By treating polybutadiene with a difluorocarbene source, we embedded gem-difluorocyclopropanes (gDFCs) along the polymer backbone. We report that mechanochemical activation of the polymer under tension opens the gDFCs and traps a 1,3-diradical that is formally a transition state in their stress-free electrocyclic isomerization. The trapped diradical lives long enough that we can observe its noncanonical participation in bimolecular addition reactions. Furthermore, the application of a transient tensile force induces a net isomerization of the trans-gDFC into its less-stable cis isomer, leading to the counterintuitive result that the gDFC contracts in response to a transient force of extension.

15.
J Chem Phys ; 125(10): 104105, 2006 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-16999513

RESUMEN

A method for constructing diabatic potential energy matrices by interpolation of ab initio quantum chemistry data is described and tested. This approach is applicable to any number of interacting electronic states, and relies on a formalism and a computational procedure that are more general than those presented previously for the case of two electronic states. The method is tested against an analytic model for three interacting electronic states of NH(3) (+).

16.
J Chem Phys ; 123(13): 134110, 2005 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-16223278

RESUMEN

A method for constructing diabatic potential-energy matrices from ab initio quantum chemistry data is described and tested for use in exact quantum reactive scattering. The method is a refinement of that presented in a previous paper, in that it accounts for the presence of the nonremovable derivative coupling. The accuracy of quantum dynamics on this type of diabatic potential is tested by comparison with an analytic model and for an ab initio description of the two lowest-energy states of H3.

17.
J Chem Phys ; 121(6): 2515-27, 2004 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-15281848

RESUMEN

A method is presented for constructing diabatic potential energy matrices from ab initio quantum chemistry data. The method is similar to that reported previously for single adiabatic potential energy surfaces, but correctly accounts for the nuclear permutation symmetry of diabatic potential energy matrices and other complications that arise from the derivative coupling of electronic states. The method is tested by comparison with an analytic model for the two lowest energy states of H(3).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA