Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Amino Acids ; 53(8): 1269-1277, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34264387

RESUMEN

Carnosine, a naturally occurring dipeptide present in an omnivorous diet, has been shown to ameliorate the development of metabolic syndrome, type-2 diabetes (T2D) and early- and advanced-stage diabetic nephropathy in different rodent models. Anserine, its methylated analogue, is more bio-available in humans upon supplementation without affecting its functionality. In this work, we investigated the effect of oral supplementation with anserine or carnosine on circulating and tissue anserine and carnosine levels and on the development of T2D and diabetic nephropathy in BTBR ob/ob mice. BTBR ob/ob mice were either supplemented with carnosine or anserine in drinking water (4 mM) for 18 weeks and compared with non-supplemented BTBR ob/ob and wild-type (WT) mice. Circulating and kidney, but not muscle, carnosine, and anserine levels were enhanced by supplementation with the respective dipeptides in ob/ob mice compared to non-treated ob/ob mice. The evolution of fasting blood glucose, insulin, fructosamine, triglycerides, and cholesterol was not affected by the supplementation regimens. The albumin/creatine ratio, glomerular hypertrophy, and mesangial matrix expansion were aggravated in ob/ob vs. WT mice, but not alleviated by supplementation. To conclude, long-term supplementation with anserine elevates circulating and kidney anserine levels in diabetic mice. However, anserine supplementation was not able to attenuate the development of T2D or diabetic nephropathy in BTBR ob/ob mice. Further research will have to elucidate whether anserine can attenuate milder forms of T2D or metabolic syndrome.


Asunto(s)
Anserina/administración & dosificación , Diabetes Mellitus Tipo 2/prevención & control , Nefropatías Diabéticas/prevención & control , Administración Oral , Animales , Anserina/análisis , Glucemia/metabolismo , Carnosina/análisis , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/complicaciones , Límite de Detección , Ratones , Obesidad/complicaciones , Obesidad/genética
2.
Int J Mol Sci ; 22(8)2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33917258

RESUMEN

Cataracts are the major cause of blindness worldwide, largely resulting from aging and diabetes mellitus. Advanced glycation end products (AGEs) have been identified as major contributors in cataract formation because they alter lens protein structure and stability and induce covalent cross-linking, aggregation, and insolubilization of lens crystallins. We investigated the potential of the deglycating enzyme fructosamine-3-kinase (FN3K) in the disruption of AGEs in cataractous lenses. Macroscopic changes of equine lenses were evaluated after ex vivo intravitreal FN3K injection. The mechanical properties of an equine lens pair were evaluated after treatment with saline and FN3K. AGE-type autofluorescence (AF) was measured to assess the time-dependent effects of FN3K on glycolaldehyde-induced AGE-modified porcine lens fragments and to evaluate its actions on intact lenses after in vivo intravitreal FN3K injection of murine eyes. A potential immune response after injection was evaluated by analysis of IL-2, TNFα, and IFNγ using an ELISA kit. Dose- and time-dependent AF kinetics were analyzed on pooled human lens fragments. Furthermore, AF measurements and a time-lapse of macroscopic changes were performed on intact cataractous human eye lenses after incubation with an FN3K solution. At last, AF measurements were performed on cataractous human eyes after crossover topical treatment with either saline- or FN3K-containing drops. While the lenses of the equine FN3K-treated eyes appeared to be clear, the saline-treated lenses had a yellowish-brown color. Following FN3K treatment, color restoration could be observed within 30 min. The extension rate of the equine FN3K-treated lens was more than twice the extension rate of the saline-treated lens. FN3K treatment induced significant time-dependent decreases in AGE-related AF values in the AGE-modified porcine lens fragments. Furthermore, in vivo intravitreal FN3K injection of murine eyes significantly reduced AF values of the lenses. Treatment did not provoke a systemic immune response in mice. AF kinetics of FN3K-treated cataractous human lens suspensions revealed dose- and time-dependent decreases. Incubation of cataractous human eye lenses with FN3K resulted in a macroscopic lighter color of the cortex and a decrease in AF values. At last, crossover topical treatment of intact human eyes revealed a decrease in AF values during FN3K treatment, while showing no notable changes with saline. Our study suggests, for the first time, a potential additional role of FN3K as an alternative treatment for AGE-related cataracts.


Asunto(s)
Catarata/tratamiento farmacológico , Catarata/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/farmacología , Animales , Catarata/diagnóstico , Catarata/etiología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Activación Enzimática , Ojo/efectos de los fármacos , Ojo/metabolismo , Productos Finales de Glicación Avanzada/administración & dosificación , Caballos , Humanos , Inmunohistoquímica , Inyecciones Intravítreas , Cristalino/efectos de los fármacos , Cristalino/metabolismo , Ratones , Fosfotransferasas (Aceptor de Grupo Alcohol)/administración & dosificación , Fosfotransferasas (Aceptor de Grupo Alcohol)/uso terapéutico
3.
Am J Physiol Renal Physiol ; 318(4): F1030-F1040, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32150446

RESUMEN

Manipulation of circulating histidine-containing dipeptides (HCD) has been shown to affect the development of diabetes and early-stage diabetic nephropathy (DN). The aim of the present study was to investigate whether such interventions, which potentially alter levels of circulating HCD, also affect the development of advanced-stage DN. Two interventions, aerobic exercise training and overexpression of the human carnosinase-1 (hCN1) enzyme, were tested. BTBR ob/ob mice were either subjected to aerobic exercise training (20 wk) or genetically manipulated to overexpress hCN1, and different diabetes- and DN-related markers were compared with control ob/ob and healthy (wild-type) mice. An acute exercise study was performed to elucidate the effect of obesity, acute running, and hCN1 overexpression on plasma HCD levels. Chronic aerobic exercise training did not affect the development of diabetes or DN, but hCN1 overexpression accelerated hyperlipidemia and aggravated the development of albuminuria, mesangial matrix expansion, and glomerular hypertrophy of ob/ob mice. In line, plasma, kidney, and muscle HCD were markedly lower in ob/ob versus wild-type mice, and plasma and kidney HCD in particular were lower in ob/ob hCN1 versus ob/ob mice but were unaffected by aerobic exercise. In conclusion, advanced glomerular damage is accelerated in mice overexpressing the hCN1 enzyme but not protected by chronic exercise training. Interestingly, we showed, for the first time, that the development of DN is closely linked to renal HCD availability. Further research will have to elucidate whether the stimulation of renal HCD levels can be a therapeutic strategy to reduce the risk for developing DN.


Asunto(s)
Nefropatías Diabéticas/enzimología , Dipeptidasas/biosíntesis , Terapia por Ejercicio , Glomérulos Renales/enzimología , Músculo Esquelético/enzimología , Obesidad/enzimología , Animales , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , Dipeptidasas/genética , Dipéptidos/metabolismo , Modelos Animales de Enfermedad , Inducción Enzimática , Histidina/análogos & derivados , Histidina/metabolismo , Humanos , Glomérulos Renales/patología , Ratones Transgénicos , Músculo Esquelético/patología , Obesidad/complicaciones , Obesidad/genética , Obesidad/patología , Factores de Tiempo
4.
Eur J Appl Physiol ; 120(12): 2749-2759, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32948897

RESUMEN

PURPOSE: Chronic ß-alanine supplementation leads to increased levels of muscle histidine-containing dipeptides. However, the majority of ingested ß-alanine is, most likely, degraded by two transaminases: GABA-T and AGXT2. In contrast to GABA-T, the in vivo role of AGXT2 with respect to ß-alanine metabolism is unknown. The purpose of the present work is to investigate if AGXT2 is functionally involved in ß-alanine homeostasis. METHODS: Muscle histidine-containing dipeptides levels were determined in AGXT2 overexpressing or knock-out mice and in human subjects with different rs37369 genotypes which is known to affect AGXT2 activity. Further, plasma ß-alanine kinetic was measured and urine was obtained from subjects with different rs37369 genotypes following ingestion of 1400 mg ß-alanine. RESULT: Overexpression of AGXT2 decreased circulating and muscle histidine-containing dipeptides (> 70% decrease; p < 0.05), while AGXT2 KO did not result in altered histidine-containing dipeptides levels. In both models, ß-alanine remained unaffected in the circulation and in muscle (p > 0.05). In humans, the results support the evidence that decreased AGXT2 activity is not associated with altered histidine-containing dipeptides levels (p > 0.05). Additionally, following an acute dose of ß-alanine, no differences in pharmacokinetic response were measured between subjects with different rs37369 genotypes (p > 0.05). Interestingly, urinary ß-alanine excretion was 103% higher in subjects associated with lower AGXT2 activity, compared to subjects associated with normal AGXT2 activity (p < 0.05). CONCLUSION: The data suggest that in vivo, ß-alanine is a substrate of AGXT2; however, its importance in the metabolism of ß-alanine and histidine-containing dipeptides seems small.


Asunto(s)
Carnosina/metabolismo , Transaminasas/metabolismo , beta-Alanina/metabolismo , Adulto , Animales , Carnosina/genética , Dipéptidos/genética , Dipéptidos/metabolismo , Genotipo , Histidina/genética , Histidina/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculos/metabolismo , Transaminasas/genética , Adulto Joven , beta-Alanina/genética
5.
Hum Mol Genet ; 26(7): 1353-1364, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28334940

RESUMEN

Gelsolin amyloidosis is a dominantly inherited, incurable type of amyloidosis. A single point mutation in the gelsolin gene (G654A is most common) results in the loss of a Ca2+ binding site in the second gelsolin domain. Consequently, this domain partly unfolds and exposes an otherwise buried furin cleavage site at the surface. During secretion of mutant plasma gelsolin consecutive cleavage by furin and MT1-MMP results in the production of 8 and 5 kDa amyloidogenic peptides. Nanobodies that are able to (partly) inhibit furin or MT1-MMP proteolysis have previously been reported. In this study, the nanobodies have been combined into a single bispecific format able to simultaneously shield mutant plasma gelsolin from intracellular furin and extracellular MT1-MMP activity. We report the successful in vivo expression of this bispecific nanobody following adeno-associated virus serotype 9 gene therapy in gelsolin amyloidosis mice. Using SPECT/CT and immunohistochemistry, a reduction in gelsolin amyloid burden was detected which translated into improved muscle contractile properties. We conclude that a nanobody-based gene therapy using adeno-associated viruses shows great potential as a novel strategy in gelsolin amyloidosis and potentially other amyloid diseases.


Asunto(s)
Amiloidosis/genética , Amiloidosis/terapia , Gelsolina/genética , Terapia Genética , Amiloidosis/patología , Animales , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/uso terapéutico , Dependovirus/genética , Dependovirus/inmunología , Modelos Animales de Enfermedad , Furina/inmunología , Furina/uso terapéutico , Gelsolina/inmunología , Humanos , Metaloproteinasa 14 de la Matriz/inmunología , Metaloproteinasa 14 de la Matriz/uso terapéutico , Ratones , Mutación Puntual/genética , Anticuerpos de Dominio Único/administración & dosificación , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/inmunología
6.
Amino Acids ; 51(1): 103-114, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30302566

RESUMEN

Carnosine (beta-alanyl-L-histidine) and its methylated analogue anserine are present in relevant concentrations in the omnivore human diet. Several studies reported promising therapeutic potential for carnosine in various rodent models of oxidative stress and inflammation-related chronic diseases. Nevertheless, the poor serum stability of carnosine in humans makes the translation of rodent models hard. Even though anserine and carnosine have similar biochemical properties, anserine has better serum stability. Despite this interesting profile, the research on anserine is scarce. The aim of this study was to explore the bioavailability and stability of synthesized anserine by (1) performing in vitro stability experiments in human plasma and molecular modelling studies and by (2) evaluating the plasma and urinary pharmacokinetic profile in healthy volunteers following different doses of anserine (4-10-20 mg/kg body weight). A bio-analytical method for measuring anserine levels was developed and validated using liquid chromatography-electrospray mass spectrometry. Both plasma (CMAX: 0.54-1.10-3.12 µM) and urinary (CMAX: 0.09-0.41-0.72 mg/mg creatinine) anserine increased dose-dependently following ingestion of 4-10-20 anserine mg/kg BW, respectively. The inter-individual variation in plasma anserine was mainly explained by the activity (R2 = 0.75) and content (R2 = 0.77) of the enzyme serum carnosinase-1. Compared to carnosine, a lower interaction energy of anserine with carnosinase-1 was suggested by molecular modelling studies. Conversely, the two dipeptides seems to have similar interaction with the PEPT1 transporter. It can be concluded that nutritionally relevant doses of synthesized anserine are well-absorbed and that its degradation by serum carnosinase-1 is less pronounced compared to carnosine. This makes anserine a good candidate as a more stable carnosine-analogue to attenuate chronic diseases in humans.


Asunto(s)
Anserina/análisis , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Adulto , Anserina/sangre , Anserina/farmacocinética , Anserina/orina , Carnosina/metabolismo , Femenino , Voluntarios Sanos , Humanos , Masculino
7.
Br J Nutr ; 119(7): 759-770, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29569535

RESUMEN

Balanced vegetarian diets are popular, although they are nearly absent in creatine and carnosine and contain considerably less carnitine than non-vegetarian diets. Few longitudinal intervention studies investigating the effect of a vegetarian diet on the availability of these compounds currently exist. We aimed to investigate the effect of transiently switching omnivores onto a vegetarian diet for 6 months on muscle and plasma creatine, carnitine and carnosine homeostasis. In a 6-month intervention, forty omnivorous women were ascribed to three groups: continued omnivorous diet (control, n 10), vegetarian diet without supplementation (Veg+Pla, n 15) and vegetarian diet combined with daily ß-alanine (0·8-0·4 g/d) and creatine supplementation (1 g creatine monohydrate/d) (Veg+Suppl, n 15). Before (0 months; 0M), after 3 months (3M) and 6 months (6M), a fasted venous blood sample and 24-h urine was collected, and muscle carnosine content was determined by proton magnetic resonance spectroscopy (1H-MRS). Muscle biopsies were obtained at 0M and 3M. Plasma creatine and muscle total creatine content declined from 0M to 3M in Veg+Pla (P=0·013 and P=0·009, respectively), whereas plasma creatine increased from 0M in Veg+Suppl (P=0·004). None of the carnitine-related compounds in plasma or muscle showed a significant time×group interaction effect. 1H-MRS-determined muscle carnosine content was unchanged over 6M in control and Veg+Pla, but increased in Veg+Suppl in soleus (P<0·001) and gastrocnemius (P=0·001) muscle. To conclude, the body creatine pool declined over a 3-month vegetarian diet in omnivorous women, which was ameliorated when accompanied by low-dose dietary creatine supplementation. Carnitine and carnosine homeostasis was unaffected by a 3- or 6-month vegetarian diet, respectively.


Asunto(s)
Carnitina/metabolismo , Carnosina/metabolismo , Creatina/metabolismo , Dieta Vegetariana , Homeostasis/fisiología , Adolescente , Adulto , Femenino , Humanos , Adulto Joven
8.
Hum Mol Genet ; 24(9): 2492-507, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25601851

RESUMEN

Hereditary gelsolin amyloidosis is an autosomal dominantly inherited amyloid disorder. A point mutation in the GSN gene (G654A being the most common one) results in disturbed calcium binding by the second gelsolin domain (G2). As a result, the folding of G2 is hampered, rendering the mutant plasma gelsolin susceptible to a proteolytic cascade. Consecutive cleavage by furin and MT1-MMP-like proteases generates 8 and 5 kDa amyloidogenic peptides that cause neurological, ophthalmological and dermatological findings. To this day, no specific treatment is available to counter the pathogenesis. Using GSN nanobody 11 as a molecular chaperone, we aimed to protect mutant plasma gelsolin from furin proteolysis in the trans-Golgi network. We report a transgenic, GSN nanobody 11 secreting mouse that was used for crossbreeding with gelsolin amyloidosis mice. Insertion of the therapeutic nanobody gene into the gelsolin amyloidosis mouse genome resulted in improved muscle contractility. X-ray crystal structure determination of the gelsolin G2:Nb11 complex revealed that Nb11 does not directly block the furin cleavage site. We conclude that nanobodies can be used to shield substrates from aberrant proteolysis and this approach might establish a novel therapeutic strategy in amyloid diseases.


Asunto(s)
Amiloide/metabolismo , Amiloidosis Familiar/metabolismo , Retículo Endoplásmico/metabolismo , Gelsolina/metabolismo , Anticuerpos de Dominio Único/farmacología , Amiloidosis Familiar/genética , Amiloidosis Familiar/fisiopatología , Animales , Modelos Animales de Enfermedad , Furina/metabolismo , Gelsolina/antagonistas & inhibidores , Gelsolina/química , Gelsolina/genética , Expresión Génica , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Contracción Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Mutación , Unión Proteica , Conformación Proteica , Proteolisis/efectos de los fármacos , Anticuerpos de Dominio Único/química , Red trans-Golgi/metabolismo
9.
J Physiol ; 594(17): 4849-63, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27062388

RESUMEN

KEY POINTS: Using recombinant DNA technology, the present study provides the first strong and direct evidence indicating that ß-alanine is an efficient substrate for the mammalian transaminating enzymes 4-aminobutyrate-2-oxoglutarate transaminase and alanine-glyoxylate transaminase. The concentration of carnosine and anserine in murine skeletal and heart muscle depends on circulating availability of ß-alanine, which is in turn controlled by degradation of ß-alanine in liver and kidney. Chronic oral ß-alanine supplementation is a popular ergogenic strategy in sports because it can increase the intracellular carnosine concentration and subsequently improve the performance of high-intensity exercises. The present study can partly explain why the ß-alanine supplementation protocol is so inefficient, by demonstrating that exogenous ß-alanine can be effectively routed toward oxidation. ABSTRACT: The metabolic fate of orally ingested ß-alanine is largely unknown. Chronic ß-alanine supplementation is becoming increasingly popular for improving high-intensity exercise performance because it is the rate-limiting precursor of the dipeptide carnosine (ß-alanyl-l-histidine) in muscle. However, only a small fraction (3-6%) of the ingested ß-alanine is used for carnosine synthesis. Thus, the present study aimed to investigate the putative contribution of two ß-alanine transamination enzymes, namely 4-aminobutyrate-2-oxoglutarate transaminase (GABA-T) and alanine-glyoxylate transaminase (AGXT2), to the homeostasis of carnosine and its methylated analogue anserine. We found that, when transfected into HEK293T cells, recombinant mouse and human GABA-T and AGXT2 are able to transaminate ß-alanine efficiently. The reaction catalysed by GABA-T is inhibited by vigabatrin, whereas both GABA-T and AGXT2 activity is inhibited by aminooxyacetic acid (AOA). Both GABA-T and AGXT2 are highly expressed in the mouse liver and kidney and the administration of the inhibitors effectively reduced their enzyme activity in liver (GABA-T for vigabatrin; GABA-T and AGXT2 for AOA). In vivo, injection of AOA in C57BL/6 mice placed on ß-alanine (0.1% w/v in drinking water) for 2 weeks lead to a 3-fold increase in circulating ß-alanine levels and to significantly higher levels of carnosine and anserine in skeletal muscle and heart. By contrast, specific inhibition of GABA-T by vigabatrin did not affect carnosine and anserine levels in either tissue. Collectively, these data demonstrate that homeostasis of carnosine and anserine in mammalian skeletal muscle and heart is controlled by circulating ß-alanine levels, which are suppressed by hepatic and renal ß-alanine transamination upon oral ß-alanine intake.


Asunto(s)
Anserina/metabolismo , Carnosina/metabolismo , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Transaminasas/metabolismo , beta-Alanina/metabolismo , Ácido Aminooxiacético/farmacología , Animales , Encéfalo/metabolismo , Inhibidores Enzimáticos/farmacología , GABAérgicos/farmacología , Células HEK293 , Homeostasis , Humanos , Riñón/metabolismo , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , Transaminasas/antagonistas & inhibidores , Transaminasas/genética , Vigabatrin/farmacología , beta-Alanina/sangre , beta-Alanina/orina
10.
Curr Opin Clin Nutr Metab Care ; 18(1): 63-70, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25474013

RESUMEN

PURPOSE OF REVIEW: The use of dietary supplements in sports is widespread as athletes are continuously searching for strategies to increase performance at the highest level. Beta-alanine is such a supplement that became increasingly popular during the past years. This review examines the available evidence regarding the optimization of supplementation, the link between beta-alanine and exercise performance and the underlying ergogenic mechanism. RECENT FINDINGS: It has been repeatedly demonstrated that chronic beta-alanine supplementation can augment intramuscular carnosine content. Yet, the factors that determine the loading process, as well as the mechanism by which this has an ergogenic effect, are still debated. On the basis of its biochemical properties, several functions are ascribed to carnosine, of which intramuscular pH buffer and calcium regulator are the most cited ones. In addition, carnosine has antiglycation and antioxidant properties, suggesting it could have a therapeutic potential. SUMMARY: On the basis of the millimolar presence of carnosine in mammalian muscles, it must play a critical role in skeletal muscle physiology. The recent number of studies shows that this is related to an improved exercise homeostasis and excitation-contraction coupling. Recent developments have led to the optimization of the beta-alanine supplementation strategies to elevate muscle carnosine content, which are helpful in its application in sports and to potential future therapeutic applications.


Asunto(s)
Antioxidantes/farmacología , Carnosina/metabolismo , Suplementos Dietéticos , Ejercicio Físico/fisiología , Músculo Esquelético/efectos de los fármacos , beta-Alanina/farmacología , Animales , Humanos , Músculo Esquelético/metabolismo
11.
Muscle Nerve ; 52(2): 278-88, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25524358

RESUMEN

INTRODUCTION: The contribution of reduced testosterone levels to tail suspension (TS)-induced muscle atrophy remains equivocal. The molecular mechanism by which testosterone regulates muscle mass during TS has not been investigated. METHODS: Effects of TS on serum testosterone levels, muscle mass, and expression of muscle atrophy- and hypertrophy-inducing targets were measured in soleus (SOL) and extensor digitorum longus (EDL) muscles after testosterone administration during 1, 5, and 14 days of TS in male mice. RESULTS: TS produced an increase followed by a transient drop in testosterone levels. Muscle atrophy was associated with downregulation of Igf1 and upregulation of Mstn, Redd1, Atrogin-1, and MuRF1 mRNA with clear differences in Igf1, Mstn, and MAFbx/Atrogin-1 gene expression between SOL and EDL. Testosterone supplementation did not affect muscle mass or protein expression levels during TS. Conclusions The known anabolic effects of testosterone are not sufficient to ameliorate loss of muscle mass during TS.


Asunto(s)
Suspensión Trasera/efectos adversos , Atrofia Muscular/sangre , Testosterona/sangre , Animales , Biomarcadores/sangre , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Atrofia Muscular/patología , ARN/sangre , Distribución Aleatoria
12.
Mol Ther ; 22(10): 1768-78, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25023329

RESUMEN

Gelsolin amyloidosis is an autosomal dominant incurable disease caused by a point mutation in the GSN gene (G654A/T), specifically affecting secreted plasma gelsolin. Incorrect folding of the mutant (D187N/Y) second gelsolin domain leads to a pathological proteolytic cascade. D187N/Y gelsolin is first cleaved by furin in the trans-Golgi network, generating a 68 kDa fragment (C68). Upon secretion, C68 is cleaved by MT1-MMP-like proteases in the extracellular matrix, releasing 8 kDa and 5 kDa amyloidogenic peptides which aggregate in multiple tissues and cause disease-associated symptoms. We developed nanobodies that recognize the C68 fragment, but not native wild type gelsolin, and used these as molecular chaperones to mitigate gelsolin amyloid buildup in a mouse model that recapitulates the proteolytic cascade. We identified gelsolin nanobodies that potently reduce C68 proteolysis by MT1-MMP in vitro. Converting these nanobodies into an albumin-binding format drastically increased their serum half-life in mice, rendering them suitable for intraperitoneal injection. A 12-week treatment schedule of heterozygote D187N gelsolin transgenic mice with recombinant bispecific gelsolin-albumin nanobody significantly decreased gelsolin buildup in the endomysium and concomitantly improved muscle contractile properties. These findings demonstrate that nanobodies may be of considerable value in the treatment of gelsolin amyloidosis and related diseases.


Asunto(s)
Amiloide/metabolismo , Amiloidosis/metabolismo , Gelsolina/metabolismo , Metaloproteinasa 14 de la Matriz/metabolismo , Chaperonas Moleculares/metabolismo , Anticuerpos de Dominio Único/metabolismo , Amiloidosis Familiar/metabolismo , Animales , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/metabolismo , Especificidad de Anticuerpos/inmunología , Modelos Animales de Enfermedad , Gelsolina/química , Gelsolina/inmunología , Humanos , Ratones , Chaperonas Moleculares/química , Chaperonas Moleculares/inmunología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Péptidos/inmunología , Péptidos/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Anticuerpos de Dominio Único/inmunología
14.
Eur J Appl Physiol ; 113(5): 1169-79, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23124893

RESUMEN

Chronic oral beta-alanine supplementation can elevate muscle carnosine (beta-alanyl-L-histidine) content and improve high-intensity exercise performance. However, the regulation of muscle carnosine levels is poorly understood. The uptake of the rate-limiting precursor beta-alanine and the enzyme catalyzing the dipeptide synthesis are thought to be key steps. The aims of this study were to investigate the expression of possible carnosine-related enzymes and transporters in both human and mouse skeletal muscle in response to carnosine-altering stimuli. Human gastrocnemius lateralis and mouse tibialis anterior muscle samples were subjected to HPLC and qPCR analysis. Mice were subjected to chronic oral supplementation of beta-alanine and carnosine or to orchidectomy (7 and 30 days, with or without testosterone replacement), stimuli known to, respectively, increase and decrease muscle carnosine and anserine. The following carnosine-related enzymes and transporters were expressed in human and/or mouse muscles: carnosine synthase (CARNS), carnosinase-2 (CNDP2), the carnosine/histidine transporters PHT1 and PHT2, the beta-alanine transporters TauT and PAT1, beta-alanine transaminase (ABAT) and histidine decarboxylase (HDC). Six of these genes showed altered expression in the investigated interventions. Orchidectomy led to decreased muscle carnosine content, which was paralleled with decreased TauT expression, whereas CARNS expression was surprisingly increased. Beta-alanine supplementation increased both muscle carnosine content and TauT, CARNS and ABAT expression, suggesting that muscles increase beta-alanine utilization through both dipeptide synthesis (CARNS) and deamination (ABAT) and further oxidation, in conditions of excess availability. Collectively, these data show that muscle carnosine homeostasis is regulated by nutritional and hormonal stimuli in a complex interplay between related transporters and enzymes.


Asunto(s)
Dipeptidasas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Músculo Esquelético/enzimología , Péptido Sintasas/metabolismo , Transcripción Genética , Adulto , Animales , Carnosina/metabolismo , Dipeptidasas/genética , Dipéptidos/biosíntesis , Femenino , Histidina Descarboxilasa/genética , Histidina Descarboxilasa/metabolismo , Humanos , Masculino , Proteínas de Transporte de Membrana/genética , Ratones , Músculo Esquelético/metabolismo , Orquiectomía , Péptido Sintasas/genética , Testosterona/metabolismo , beta-Alanina/metabolismo , beta-Alanina-Piruvato Transaminasa/metabolismo
15.
Am J Physiol Renal Physiol ; 302(12): F1537-44, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22496410

RESUMEN

A polymorphism in the carnosine dipeptidase-1 gene (CNDP1), resulting in decreased plasma carnosinase activity, is associated with a reduced risk for diabetic nephropathy. Because carnosine, a natural scavenger/suppressor of ROS, advanced glycation end products, and reactive aldehydes, is readily degraded in blood by the highly active carnosinase enzyme, it has been postulated that low serum carnosinase activity might be advantageous to reduce diabetic complications. The aim of this study was to examine whether low carnosinase activity promotes circulating carnosine levels after carnosine supplementation in humans. Blood and urine were sampled in 25 healthy subjects after acute supplementation with 60 mg/kg body wt carnosine. Precooled EDTA-containing tubes were used for blood withdrawal, and plasma samples were immediately deproteinized and analyzed for carnosine and ß-alanine by HPLC. CNDP1 genotype, baseline plasma carnosinase activity, and protein content were assessed. Upon carnosine ingestion, 8 of the 25 subjects (responders) displayed a measurable increase in plasma carnosine up to 1 h after supplementation. Subjects with no measurable increment in plasma carnosine (nonresponders) had ∼2-fold higher plasma carnosinase protein content and ∼1.5-fold higher activity compared with responders. Urinary carnosine recovery was 2.6-fold higher in responders versus nonresponders and was negatively dependent on both the activity and protein content of the plasma carnosinase enzyme. In conclusion, low plasma carnosinase activity promotes the presence of circulating carnosine upon an oral challenge. These data may further clarify the link among CNDP1 genotype, carnosinase, and diabetic nephropathy.


Asunto(s)
Carnosina/administración & dosificación , Dipeptidasas/sangre , Administración Oral , Adulto , Cromatografía Líquida de Alta Presión , Nefropatías Diabéticas/genética , Dipeptidasas/genética , Dipeptidasas/orina , Femenino , Humanos , Masculino , beta-Alanina/sangre
16.
Amino Acids ; 43(1): 13-20, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22170500

RESUMEN

The dipeptide carnosine is found in high concentrations in human skeletal muscle and shows large inter-individual differences. Sex and age are determining factors, however, systematic studies investigating the sex effects on muscle carnosine content throughout the human lifespan are lacking. Despite the large inter-individual variation, the intra-individual variation is limited. The question may be asked whether the carnosine content is a muscle characteristic which may be largely genetically determined. A total of 263 healthy male and female subjects of 9-83 years were divided into five different age groups: prepubertal children (PC), adolescents (A), young adults (YA), middle adults (MA) and elderly (E). We included 25 monozygotic and 22 dizygotic twin pairs among the entire study population to study the heritability. The carnosine content was measured non-invasively in the gastrocnemius medialis and soleus by proton magnetic resonance spectroscopy (1H-MRS). In boys, carnosine content was significantly higher (gastrocnemius 22.9%; soleus 44.6%) in A compared to PC, while it did not differ in girls. A decrease (~16%) was observed both in males and females from YA to MA. However, elderly did not have lower carnosine levels in comparison with MA. Higher correlations were found in monozygotic (r=0.86) compared to dizygotic (r=0.51) twins, in soleus muscle, but not in gastrocnemius. In conclusion, this study found an effect of puberty on muscle carnosine content in males, but not in females. Muscle carnosine decreased mainly during early adulthood and hardly from adulthood to elderly. High intra-twin correlations were observed, but muscle-dependent differences preclude clear conclusions toward heritability.


Asunto(s)
Carnosina/análisis , Músculo Esquelético/metabolismo , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Niño , Femenino , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Persona de Mediana Edad , Músculo Esquelético/química , Factores Sexuales , Gemelos/genética , Adulto Joven
17.
Amino Acids ; 43(1): 21-4, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22120670

RESUMEN

Carnosine is present in high concentrations in skeletal muscle where it contributes to acid buffering and functions also as a natural protector against oxidative and carbonyl stress. Animal studies have shown an anti-diabetic effect of carnosine supplementation. High carnosinase activity, the carnosine degrading enzyme in serum, is a risk factor for diabetic complications in humans. The aim of the present study was to compare the muscle carnosine concentration in diabetic subjects to the level in non-diabetics. Type 1 and 2 diabetic patients and matched healthy controls (total n=58) were included in the study. Muscle carnosine content was evaluated by proton magnetic resonance spectroscopy (3 Tesla) in soleus and gastrocnemius. Significantly lower carnosine content (-45%) in gastrocnemius muscle, but not in soleus, was shown in type 2 diabetic patients compared with controls. No differences were observed in type 1 diabetic patients. Type II diabetic patients display a reduced muscular carnosine content. A reduction in muscle carnosine concentration may be partially associated with defective mechanisms against oxidative, glycative and carbonyl stress in muscle.


Asunto(s)
Carnosina/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Músculo Esquelético/metabolismo , Adulto , Carnosina/sangre , Estudios de Casos y Controles , Femenino , Glucosa/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Persona de Mediana Edad , Músculo Esquelético/química , Estrés Oxidativo , Estudios Prospectivos
18.
Nutrients ; 14(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35276873

RESUMEN

Studies suggest that carnosine (beta-alanyl-L-histidine) is effective in treating neuromuscular diseases associated with aging, but there is still a need to clarify its role in motor units (MUs) function during aging. In this study, 40 male Wistar rats aged 15 months were randomly assigned to a control or to two experimental groups in which 0.1% carnosine supplementation was performed for 10 or 34 weeks. After 34 weeks, we examined fast fatigable (FF), fast fatigue-resistant (FR) and slow (S) MUs' force properties and fatigability, as well as antioxidant potential, advanced glycation end products, activity of enzymes, and histidyl dipeptides content in the medial gastrocnemius muscle. Short- and long-term carnosine supplementation maintained the force of FF MUs at a higher level during its rapid decline seen from the initial 10 to 70 s of the fatigue test. In FF, especially long-term, and in FR MUs, especially short-term, carnosine supplementation resulted in less rapid force decline during the initial 70 s of the second fatigue protocol. Carnosine supplementation did not change muscle antioxidant potential and mortality rate (~35% in all groups), nor muscle mass with aging. Moreover, instead of the expected increase, a decrease in histidyl dipeptides by ~30% in the red portion of medial gastrocnemius muscle after long-term supplementation was found. After chronic carnosine supplementation, the specific changes in fatigue resistance were observed in FF and FR units, but not in S MU types that were not accompanied by an improvement of antioxidant potential and activity of glycolytic or oxidative enzymes in aged rats. These observations indicate that carnosine supplementation during aging may generate different physiological adaptations which should be considered as an important factor when planning treatment strategies.


Asunto(s)
Carnosina , Contracción Muscular , Animales , Carnosina/farmacología , Suplementos Dietéticos , Masculino , Neuronas Motoras , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Ratas , Ratas Wistar
19.
Amino Acids ; 40(4): 1221-9, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20865290

RESUMEN

Carnosine is found in high concentrations in skeletal muscles, where it is involved in several physiological functions. The muscle carnosine content measured within a population can vary by a factor 4. The aim of this study was to further characterize suggested determinants of the muscle carnosine content (diet, gender and age) and to identify new determinants (plasma carnosinase activity and testosterone). We investigated a group of 149 healthy subjects, which consisted of 94 men (12 vegetarians) and 55 women. Muscle carnosine was quantified in M. soleus, gastrocnemius and tibialis anterior using magnetic resonance proton spectroscopy and blood samples were collected to determine CNDP1 genotype, plasma carnosinase activity and testosterone concentrations. Compared to women, men have 36, 28 and 82% higher carnosine concentrations in M. soleus, gastrocnemius and tibialis anterior muscle, respectively, whereas circulating testosterone concentrations were unrelated to muscle carnosine levels in healthy men. The carnosine content of the M. soleus is negatively related to the subjects' age. Vegetarians have a lower carnosine content of 26% in gastrocnemius compared to omnivores. In contrast, there is no difference in muscle carnosine content between omnivores with a high or low ingestion of ß-alanine. Muscle carnosine levels are not related to the polymorphism of the CNDP1 gene or to the enzymatic activity of the plasma carnosinase. In conclusion, neither CNDP1 genotype nor the normal variation in circulating testosterone levels affects the muscular carnosine content, whereas vegetarianism, female gender and increasing age are the factors associated with reduced muscle carnosine stores.


Asunto(s)
Carnosina/sangre , Dipeptidasas , Músculos/química , Adolescente , Adulto , Factores de Edad , Dieta , Dieta Vegetariana/efectos adversos , Suplementos Dietéticos , Dipeptidasas/sangre , Dipeptidasas/genética , Femenino , Expresión Génica , Genotipo , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Polimorfismo Genético , Factores Sexuales , Testosterona/sangre , Adulto Joven , beta-Alanina/análisis
20.
Eur J Appl Physiol ; 111(10): 2571-80, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21373871

RESUMEN

Carnosine is an abundant dipeptide in human skeletal muscle with proton buffering capacity. There is controversy as to whether training can increase muscle carnosine and thereby provide a mechanism for increased buffering capacity. This study investigated the effects of 5 weeks sprint training combined with a vegetarian or mixed diet on muscle carnosine, carnosine synthase mRNA expression and muscle buffering capacity. Twenty omnivorous subjects participated in a 5 week sprint training intervention (2-3 times per week). They were randomized into a vegetarian and mixed diet group. Measurements (before and after the intervention period) included carnosine content in soleus, gastrocnemius lateralis and tibialis anterior by proton magnetic resonance spectroscopy ((1)H-MRS), true-cut biopsy of the gastrocnemius lateralis to determine in vitro non-bicarbonate muscle buffering capacity, carnosine content (HPLC method) and carnosine synthase (CARNS) mRNA expression and 6 × 6 s repeated sprint ability (RSA) test. There was a significant diet × training interaction in soleus carnosine content, which was non-significantly increased (+11%) with mixed diet and non-significantly decreased (-9%) with vegetarian diet. Carnosine content in other muscles and gastrocnemius buffer capacity were not influenced by training. CARNS mRNA expression was independent of training, but decreased significantly in the vegetarian group. The performance during the RSA test improved by training, without difference between groups. We found a positive correlation (r = 0.517; p = 0.002) between an invasive and non-invasive method for muscle carnosine quantification. In conclusion, this study shows that 5 weeks sprint training has no effect on the muscle carnosine content and carnosine synthase mRNA.


Asunto(s)
Carnosina/metabolismo , Dieta Vegetariana , Dieta , Músculo Esquelético/metabolismo , Enfermedades Musculares/prevención & control , Educación y Entrenamiento Físico/métodos , Carrera/fisiología , Aceleración , Adulto , Rendimiento Atlético/fisiología , Tampones (Química) , Carnosina/análisis , Carnosina/fisiología , Terapia Combinada , Femenino , Humanos , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Masculino , Músculo Esquelético/química , Enfermedades Musculares/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA