Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38861354

RESUMEN

Numerous studies have demonstrated that endostatin (ES), a potent angiostatic peptide derived from collagen type XVIII alpha 1 chain and encoded by COL18A1, is elevated in pulmonary arterial hypertension (PAH). Importantly, elevated ES has consistently been associated with altered hemodynamics, poor functional status, and adverse outcomes in adult and pediatric PAH. This study used serum samples from patients with Group I PAH and plasma and tissue samples derived from the Sugen/Chronic hypoxic (SuHx) rat pulmonary hypertension (PH) model to define associations between COL18A1/ES and disease development, including hemodynamics, right ventricular (RV) remodeling, and RV dysfunction. Using cardiac magnetic resonance (CMR) imaging and advanced hemodynamic assessments with pressure-volume (PV) loops in patients with PAH to assess RV-pulmonary arterial (PA) coupling, we observed a strong relationship between circulating ES levels and metrics of RV structure and function. Specifically, RV mass and the ventricular mass index (VMI) were positively associated with ES while RV ejection fraction and RV-PA coupling were inversely associated with ES levels. Our animal data demonstrates that the development of PH is associated with increased COL18A1/ES in the heart as well as the lungs. Disease-associated increases in COL18A1 mRNA and protein were most pronounced in the RV compared to the left ventricle (LV) and lung. COL18A1 expression in the RV was strongly associated with disease-associated changes in RV mass, fibrosis, and myocardial capillary density. These findings indicate that COL18A1/ES increase early in disease development in the RV and implicate COL18A1/ES in pathologic RV dysfunction in PAH.

2.
Dev Neurosci ; 46(1): 55-68, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37231858

RESUMEN

Neonatal hypoxic-ischemic encephalopathy (HIE) is the leading cause of acquired neonatal brain injury with the risk of developing serious neurological sequelae and death. An accurate and robust prediction of short- and long-term outcomes may provide clinicians and families with fundamental evidence for their decision-making, the design of treatment strategies, and the discussion of developmental intervention plans after discharge. Diffusion tensor imaging (DTI) is one of the most powerful neuroimaging tools with which to predict the prognosis of neonatal HIE by providing microscopic features that cannot be assessed by conventional magnetic resonance imaging (MRI). DTI provides various scalar measures that represent the properties of the tissue, such as fractional anisotropy (FA) and mean diffusivity (MD). Since the characteristics of the diffusion of water molecules represented by these measures are affected by the microscopic cellular and extracellular environment, such as the orientation of structural components and cell density, they are often used to study the normal developmental trajectory of the brain and as indicators of various tissue damage, including HIE-related pathologies, such as cytotoxic edema, vascular edema, inflammation, cell death, and Wallerian degeneration. Previous studies have demonstrated widespread alteration in DTI measurements in severe cases of HIE and more localized changes in neonates with mild-to-moderate HIE. In an attempt to establish cutoff values to predict the occurrence of neurological sequelae, MD and FA measurements in the corpus callosum, thalamus, basal ganglia, corticospinal tract, and frontal white matter have proven to have an excellent ability to predict severe neurological outcomes. In addition, a recent study has suggested that a data-driven, unbiased approach using machine learning techniques on features obtained from whole-brain image quantification may accurately predict the prognosis of HIE, including for mild-to-moderate cases. Further efforts are needed to overcome current challenges, such as MRI infrastructure, diffusion modeling methods, and data harmonization for clinical application. In addition, external validation of predictive models is essential for clinical application of DTI to prognostication.


Asunto(s)
Imagen de Difusión Tensora , Hipoxia-Isquemia Encefálica , Recién Nacido , Humanos , Imagen de Difusión Tensora/métodos , Pronóstico , Hipoxia-Isquemia Encefálica/patología , Imagen de Difusión por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Edema/complicaciones , Edema/patología
3.
Dev Neurosci ; 46(2): 136-144, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37467736

RESUMEN

Quantitative analysis of electroencephalography (qEEG) is a potential source of biomarkers for neonatal encephalopathy (NE). However, prior studies using qEEG in NE were limited in their generalizability due to individualized techniques for calculating qEEG features or labor-intensive pre-selection of EEG data. We piloted a fully automated method using commercially available software to calculate the suppression ratio (SR), absolute delta power, and relative delta, theta, alpha, and beta power from EEG of neonates undergoing 72 h of therapeutic hypothermia (TH) for NE between April 20, 2018, and November 4, 2019. We investigated the association of qEEG with degree of encephalopathy (modified Sarnat score), severity of neuroimaging abnormalities following TH (National Institutes of Child Health and Development Neonatal Research Network [NICHD-NRN] score), and presence of seizures. Thirty out of 38 patients met inclusion criteria. A more severe modified Sarnat score was associated with higher SR during all phases of TH, lower absolute delta power during all phases except rewarming, and lower relative delta power during the last 24 h of TH. In 21 patients with neuroimaging data, a worse NICHD-NRN score was associated with higher SR, lower absolute delta power, and higher relative beta power during all phases. QEEG features were not significantly associated with the presence of seizures after correction for multiple comparisons. Our results are consistent with those of prior studies using qEEG in NE and support automated qEEG analysis as an accessible, generalizable method for generating biomarkers of NE and response to TH. Additionally, we found evidence of an immature relative frequency composition in neonates with more severe brain injury, suggesting that automated qEEG analysis may have a use in the assessment of brain maturity.


Asunto(s)
Electroencefalografía , Hipoxia-Isquemia Encefálica , Recién Nacido , Niño , Humanos , Proyectos Piloto , Electroencefalografía/métodos , Convulsiones , Hipoxia-Isquemia Encefálica/diagnóstico , Hipoxia-Isquemia Encefálica/terapia , Biomarcadores
4.
Respir Res ; 25(1): 235, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844967

RESUMEN

BACKGROUND: Abnormal remodeling of distal pulmonary arteries in patients with pulmonary arterial hypertension (PAH) leads to progressively increased pulmonary vascular resistance, followed by right ventricular hypertrophy and failure. Despite considerable advancements in PAH treatment prognosis remains poor. We aim to evaluate the potential for using the cytokine resistin as a genetic and biological marker for disease severity and survival in a large cohort of patients with PAH. METHODS: Biospecimens, clinical, and genetic data for 1121 adults with PAH, including 808 with idiopathic PAH (IPAH) and 313 with scleroderma-associated PAH (SSc-PAH), were obtained from a national repository. Serum resistin levels were measured by ELISA, and associations between resistin levels, clinical variables, and single nucleotide polymorphism genotypes were examined with multivariable regression models. Machine-learning (ML) algorithms were applied to develop and compare risk models for mortality prediction. RESULTS: Resistin levels were significantly higher in all PAH samples and PAH subtype (IPAH and SSc-PAH) samples than in controls (P < .0001) and had significant discriminative abilities (AUCs of 0.84, 0.82, and 0.91, respectively; P < .001). High resistin levels (above 4.54 ng/mL) in PAH patients were associated with older age (P = .001), shorter 6-min walk distance (P = .001), and reduced cardiac performance (cardiac index, P = .016). Interestingly, mutant carriers of either rs3219175 or rs3745367 had higher resistin levels (adjusted P = .0001). High resistin levels in PAH patients were also associated with increased risk of death (hazard ratio: 2.6; 95% CI: 1.27-5.33; P < .0087). Comparisons of ML-derived survival models confirmed satisfactory prognostic value of the random forest model (AUC = 0.70, 95% CI: 0.62-0.79) for PAH. CONCLUSIONS: This work establishes the importance of resistin in the pathobiology of human PAH. In line with its function in rodent models, serum resistin represents a novel biomarker for PAH prognostication and may indicate a new therapeutic avenue. ML-derived survival models highlighted the importance of including resistin levels to improve performance. Future studies are needed to develop multi-marker assays that improve noninvasive risk stratification.


Asunto(s)
Resistina , Índice de Severidad de la Enfermedad , Humanos , Masculino , Femenino , Resistina/sangre , Persona de Mediana Edad , Adulto , Biomarcadores/sangre , Valor Predictivo de las Pruebas , Hipertensión Arterial Pulmonar/sangre , Hipertensión Arterial Pulmonar/diagnóstico , Hipertensión Arterial Pulmonar/mortalidad , Anciano , Estudios de Cohortes , Polimorfismo de Nucleótido Simple , Tasa de Supervivencia/tendencias , Hipertensión Pulmonar/sangre , Hipertensión Pulmonar/diagnóstico , Hipertensión Pulmonar/mortalidad , Hipertensión Pulmonar/genética
5.
Perfusion ; : 2676591241256006, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38757156

RESUMEN

INTRODUCTION: Early diagnosis of acute brain injury (ABI) is critical for patients on veno-arterial extracorporeal membrane oxygenation (V-A ECMO) to guide anticoagulation strategy; however, neurological assessment in ECMO is often limited by patient sedation. METHODS: In this pilot study of adults from June 2018 to May 2019, plasma samples of glial fibrillary acidic protein (GFAP), neurofilament light chain (NFL), and tubulin associated unit (Tau) were collected daily after V-A ECMO cannulation and measured using a multiplex platform. Primary outcomes were occurrence of ABI, assessed clinically, and neurologic outcome, assessed by modified Rankin Scale (mRS). RESULTS: Of 20 consented patients (median age = 48.5°years; 55% female), 8 (40%) had ABI and 15 (75%) had unfavorable neurologic outcome at discharge. 10 (50%) patients were centrally cannulated. Median duration on ECMO was 4.5°days (IQR: 2.5-9.5). Peak GFAP, NFL, and Tau levels were higher in patients with ABI vs. without (AUC = 0.77; 0.85; 0.57, respectively) and in patients with unfavorable vs. favorable neurologic outcomes (AUC = 0.64; 0.59; 0.73, respectively). GFAP elevated first, NFL elevated to the highest degree, and Tau showed limited change regardless of ABI. CONCLUSION: Further studies are warranted to determine how plasma biomarkers may facilitate early detection of ABIs in V-A ECMO to assist timely clinical decision-making.

6.
J Pediatr ; 252: 146-153.e2, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35944723

RESUMEN

OBJECTIVE: The objective of the study was to evaluate the relationship between a panel of candidate plasma biomarkers and (1) death or severe brain injury on magnetic resonance imaging (MRI) and (2) dysfunctional cerebral pressure autoregulation as a measure of evolving encephalopathy. STUDY DESIGN: Neonates with moderate-to-severe hypoxic-ischemic encephalopathy (HIE) at 2 level IV neonatal intensive care units were enrolled into this observational study. Patients were treated with therapeutic hypothermia (TH) and monitored with continuous blood pressure monitoring and near-infrared spectroscopy. Cerebral pressure autoregulation was measured by the hemoglobin volume phase (HVP) index; a higher HVP index indicates poorer autoregulation. Serial blood samples were collected during TH and assayed for Tau, glial fibrillary acidic protein, and neurogranin. MRIs were assessed using National Institutes of Child Health and Human Development scores. The relationships between the candidate biomarkers and (1) death or severe brain injury on MRI (defined as a National Institutes of Child Health and Human Development score of ≥ 2B) and (2) autoregulation were evaluated using bivariate and adjusted logistic regression models. RESULTS: Sixty-two patients were included. Elevated Tau levels on days 2-3 of TH were associated with death or severe injury on MRI (aOR: 1.06, 95% CI: 1.03-1.09; aOR: 1.04, 95% CI: 1.01-1.06, respectively). Higher Tau was also associated with poorer autoregulation (higher HVP index) on the same day (P = .022). CONCLUSIONS: Elevated plasma levels of Tau are associated with death or severe brain injury by MRI and dysfunctional cerebral autoregulation in neonates with HIE. Larger-scale validation of Tau as a biomarker of brain injury in neonates with HIE is warranted.


Asunto(s)
Lesiones Encefálicas , Hipotermia Inducida , Hipoxia-Isquemia Encefálica , Recién Nacido , Niño , Humanos , Hipoxia-Isquemia Encefálica/patología , Imagen por Resonancia Magnética/métodos , Biomarcadores
7.
Pediatr Res ; 93(7): 1943-1954, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34923579

RESUMEN

BACKGROUND: To determine the association of gestational age (GA) and day of life (DOL) with the circulating serum concentration of six brain injury-associated biomarkers in non-brain injured neonates born between 23 and 41 weeks' GA. METHODS: In a multicenter prospective observational cohort study, serum CNS-insult, inflammatory and trophic proteins concentrations were measured daily in the first 7 DOL. RESULTS: Overall, 3232 serum samples were analyzed from 745 enrollees, median GA 32.3 weeks. BDNF increased 3.7% and IL-8 increased 8.9% each week of gestation. VEGF, IL-6, and IL-10 showed no relationship with GA. VEGF increased 10.8% and IL-8 18.9%, each DOL. IL-6 decreased by 15.8% each DOL. IL-10 decreased by 81.4% each DOL for DOL 0-3. BDNF did not change with DOL. Only 49.67% of samples had detectable GFAP and 33.15% had detectable NRGN. The odds of having detectable GFAP and NRGN increased by 53% and 11%, respectively, each week after 36 weeks' GA. The odds of having detectable GFAP and NRGN decreased by 15% and 8%, respectively, each DOL. CONCLUSIONS: BDNF and IL-8 serum concentrations vary with GA. VEGF and interleukin concentrations are dynamic in the first week of life, suggesting circulating levels should be adjusted for GA and DOL for clinically relevant assessment of brain injury. IMPACT: Normative data of six brain injury-related biomarkers is being proposed. When interpreting serum concentrations of brain injury biomarkers, it is key to adjust for gestational age at birth and day of life during the first week to correctly assess for clinical brain injury in neonates. Variation in levels of some biomarkers may be related to gestational and postnatal age and not necessarily pathology.


Asunto(s)
Lesiones Encefálicas , Interleucina-10 , Recién Nacido , Humanos , Interleucina-6 , Estudios Prospectivos , Factor Neurotrófico Derivado del Encéfalo , Interleucina-8 , Factor A de Crecimiento Endotelial Vascular , Edad Gestacional , Biomarcadores , Lesiones Encefálicas/diagnóstico
8.
Pediatr Res ; 94(6): 1958-1965, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37340101

RESUMEN

BACKGROUND: Extremely low birth weight (ELBW) infants comprise a fragile population at risk for neurodevelopmental disabilities (NDD). Systemic steroids were previously associated with NDD, but more recent studies suggest hydrocortisone (HCT) may improve survival without increasing NDD. However, the effects of HCT on head growth adjusted for illness severity during NICU hospitalization are unknown. Thus, we hypothesize that HCT will protect head growth, accounting for illness severity using a modified neonatal Sequential Organ Failure Assessment (M-nSOFA) score. METHODS: We conducted a retrospective study that included infants born at 23-29 weeks gestational age (GA) and < 1000 g. Our study included 73 infants, 41% of whom received HCT. RESULTS: We found negative correlations between growth parameters and age, similar between HCT and control patients. HCT-exposed infants had lower GA but similar normalized birth weights; HCT-exposed infants also had higher illness severity and longer lengths of hospital stay. We found an interaction between HCT exposure and illness severity on head growth, such that infants exposed to HCT had better head growth compared to those not exposed to HCT when adjusted for illness severity. CONCLUSION: These findings emphasize the importance of considering patient illness severity and suggest that HCT use may offer additional benefits not previously considered. IMPACT: This is the first study to assess the relationship between head growth and illness severity in extremely preterm infants with extremely low birth weights during their initial NICU hospitalization. Infants exposed to hydrocortisone (HCT) were overall more ill than those not exposed, yet HCT exposed infants had better preserved head growth relative to illness severity. Better understanding of the effects of HCT exposure on this vulnerable population will help guide more informed decisions on the relative risks and benefits for HCT use.


Asunto(s)
Hidrocortisona , Recien Nacido con Peso al Nacer Extremadamente Bajo , Humanos , Recién Nacido , Lactante , Hidrocortisona/uso terapéutico , Estudios Retrospectivos , Recien Nacido Prematuro , Gravedad del Paciente
9.
Proc Natl Acad Sci U S A ; 117(20): 10958-10969, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32366656

RESUMEN

Necrotizing enterocolitis (NEC) is an inflammatory bowel necrosis of premature infants and an orphan disease with no specific treatment. Most patients with confirmed NEC develop moderate-severe thrombocytopenia requiring one or more platelet transfusions. Here we used our neonatal murine model of NEC-related thrombocytopenia to investigate mechanisms of platelet depletion associated with this disease [K. Namachivayam, K. MohanKumar, L. Garg, B. A. Torres, A. Maheshwari, Pediatr. Res. 81, 817-824 (2017)]. In this model, enteral administration of immunogen trinitrobenzene sulfonate (TNBS) in 10-d-old mouse pups produces an acute necrotizing ileocolitis resembling human NEC within 24 h, and these mice developed thrombocytopenia at 12 to 15 h. We hypothesized that platelet activation and depletion occur during intestinal injury following exposure to bacterial products translocated across the damaged mucosa. Surprisingly, platelet activation began in our model 3 h after TNBS administration, antedating mucosal injury or endotoxinemia. Platelet activation was triggered by thrombin, which, in turn, was activated by tissue factor released from intestinal macrophages. Compared to adults, neonatal platelets showed enhanced sensitivity to thrombin due to higher expression of several downstream signaling mediators and the deficiency of endogenous thrombin antagonists. The expression of tissue factor in intestinal macrophages was also unique to the neonate. Targeted inhibition of thrombin by a nanomedicine-based approach was protective without increasing interstitial hemorrhages in the inflamed bowel or other organs. In support of these data, we detected increased circulating tissue factor and thrombin-antithrombin complexes in patients with NEC. Our findings show that platelet activation is an important pathophysiological event and a potential therapeutic target in NEC.


Asunto(s)
Enterocolitis Necrotizante/metabolismo , Enterocolitis Necrotizante/patología , Enfermedades del Recién Nacido/metabolismo , Trombina/metabolismo , Animales , Animales Recién Nacidos , Plaquetas/metabolismo , Modelos Animales de Enfermedad , Humanos , Recién Nacido , Inflamación/metabolismo , Enfermedades Intestinales/patología , Intestinos/lesiones , Intestinos/patología , Macrófagos/metabolismo , Ratones , Trombocitopenia/metabolismo
10.
J Pediatr ; 246: 34-39.e3, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35460699

RESUMEN

OBJECTIVE: To measure plasma levels of vascular endothelial growth factor (VEGF) and several cytokines (Interleukin [IL]-6 IL-8, IL-10) during the first week of life to examine the relationship between protein expression and likelihood of developing respiratory distress syndrome (RDS) and bronchopulmonary dysplasia (BPD). STUDY DESIGN: Levels of IL-6, IL-8, IL-10, and VEGF were measured from plasma obtained from preterm patients during the first week of life. Newborns were recruited from a single center between April 2009 and April 2019. Criteria for the study included being inborn, birth weight of less than 1500 grams, and a gestational age of less than 32 weeks at birth. RESULTS: The development of RDS in preterm newborns was associated with lower levels of VEGF during the first week of life. Higher plasma levels of IL-6 and IL-8 plasma were associated with an increased likelihood and increased severity of BPD at 36 weeks postmenstrual age. In contrast, plasma levels of VEGF, IL-6, IL-8, and IL-10 obtained during the first week of life were not associated with respiratory symptoms and acute care use in young children with BPD in the outpatient setting. CONCLUSIONS: During the first week of life, lower plasma levels of VEGF was associated with the diagnosis of RDS in preterm infants. Preterm infants with higher levels of IL-6 and IL-8 during the first week of life were also more likely to be diagnosed with BPD. These biomarkers may help to predict respiratory morbidities in preterm newborns during their initial hospitalization.


Asunto(s)
Displasia Broncopulmonar , Síndrome de Dificultad Respiratoria del Recién Nacido , Biomarcadores/sangre , Displasia Broncopulmonar/diagnóstico , Citocinas/sangre , Femenino , Humanos , Lactante , Recién Nacido , Recien Nacido Prematuro , Interleucina-10 , Interleucina-6 , Interleucina-8 , Embarazo , Síndrome de Dificultad Respiratoria del Recién Nacido/diagnóstico , Factor A de Crecimiento Endotelial Vascular/sangre
11.
J Pediatr ; 241: 68-76.e3, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34687693

RESUMEN

OBJECTIVE: To evaluate the performance of pulmonary hypertension (PH) biomarkers in children with Down syndrome, an independent risk factor for PH, in whom biomarker performance may differ compared with other populations. STUDY DESIGN: Serum endostatin, interleukin (IL)-1 receptor 1 (ST2), galectin-3, N-terminal pro hormone B-natriuretic peptide (NT-proBNP), IL-6, and hepatoma-derived growth factor (HDGF) were measured in subjects with Down syndrome and PH (n = 29), subjects with Down syndrome and resolved PH (n = 13), subjects with Down syndrome without PH (n = 49), and subjects without Down syndrome with World Symposium on Pulmonary Hypertension group I pulmonary arterial hypertension (no Down syndrome PH group; n = 173). Each biomarker was assessed to discriminate PH in Down syndrome. A classification tree was created to distinguish PH from resolved PH and no PH in children with Down syndrome. RESULTS: Endostatin, galectin-3, HDGF, and ST2 were elevated in subjects with Down syndrome regardless of PH status. Not all markers differed between subjects with Down syndrome and PH and subjects with Down syndrome and resolved PH. NT-proBNP and IL-6 levels were similar in the Down syndrome with PH group and the no Down syndrome PH group. A classification tree identified NT-proBNP and galectin-3 as the best markers for sequentially distinguishing PH, resolved PH, and no PH in subjects with Down syndrome. CONCLUSIONS: Proteomic markers are used to improve the diagnosis and prognosis of PH but, as demonstrated here, can be altered in genetically unique populations such as individuals with Down syndrome. This further suggests that clinical biomarkers should be evaluated in unique groups with the development of population-specific nomograms.


Asunto(s)
Síndrome de Down/complicaciones , Hipertensión Pulmonar/sangre , Adolescente , Biomarcadores/sangre , Estudios de Casos y Controles , Niño , Preescolar , Endostatinas/sangre , Femenino , Galectina 3/sangre , Humanos , Hipertensión Pulmonar/complicaciones , Péptidos y Proteínas de Señalización Intercelular/sangre , Interleucina-6/sangre , Masculino , Péptido Natriurético Encefálico , Fragmentos de Péptidos , Receptores de Interleucina-1/sangre
12.
Pediatr Res ; 92(2): 549-556, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34732815

RESUMEN

BACKGROUND: Inflammatory and endothelial activation responses during extracorporeal membrane oxygenation (ECMO) support in children are poorly understood. In this study, we aimed to determine if circulating inflammatory, endothelial activation, and fibrinolytic markers are associated with mortality and with neurologic outcomes in children on ECMO. METHODS: We conducted a secondary analysis of a two-center prospective observational study of 99 neonatal and pediatric ECMO patients. Inflammatory (interferon gamma [IFNγ], interleukin-6 [IL-6], IL-1ß, tumor necrosis factor alpha [TNFα]), endothelial activation (E-selectin, P-selectin, intercellular adhesion molecule-3 [ICAM-3], thrombomodulin [TM]), and fibrinolytic markers (tissue plasminogen activator [tPA], plasminogen activator inhibitor-1 [PAI-1]) were measured in plasma on days 1, 2, 3, 5, 7, and every third day thereafter during the ECMO course. RESULTS: All ECMO day 1 inflammatory biomarkers were significantly elevated in children with abnormal vs. normal neuroimaging. ECMO day 1 and peak levels of IL-6 and PAI-1 were significantly elevated in children who died compared to those who survived to hospital discharge. Tested biomarkers showed no significant association with long-term neurobehavioral outcomes measured using the Vineland Adaptive Behavioral Scales, Second Edition. CONCLUSIONS: High levels of circulating inflammatory, endothelial activation, and fibrinolytic markers are associated with mortality and abnormal neuroimaging in children on ECMO. IMPACT: The inflammatory, endothelial activation, and fibrinolytic profile of children on ECMO differs by primary indication for extracorporeal support. Proinflammatory biomarkers on ECMO day 1 are associated with abnormal neurologic imaging in children on ECMO in univariable but not multivariable models. In multivariable models, a pronounced proinflammatory and prothrombotic biomarker profile on ECMO day 1 and longitudinally was significantly associated with mortality. Further studies are needed to identify inflammatory, endothelial, and fibrinolytic profiles associated with increased risk for neurologic injury and mortality through potential mediation of bleeding and thrombosis.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Biomarcadores , Niño , Oxigenación por Membrana Extracorpórea/métodos , Humanos , Recién Nacido , Inflamación/etiología , Molécula 3 de Adhesión Intercelular , Interferón gamma , Interleucina-6 , Selectina-P , Inhibidor 1 de Activador Plasminogénico , Trombomodulina , Activador de Tejido Plasminógeno , Factor de Necrosis Tumoral alfa
13.
Pediatr Res ; 92(2): 466-473, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34621028

RESUMEN

BACKGROUND: To investigate mechanisms of injury and recovery in neonatal encephalopathy (NE), we performed targeted metabolomic analysis of plasma using liquid chromatography with tandem mass spectrometry (LC/MS/MS) from healthy term neonates or neonates with NE. METHODS: Plasma samples from the NE (n = 45, day of life 0-1) or healthy neonatal (n = 30, ≥36 weeks gestation) cohorts had LC/MS/MS metabolomic profiling with a 193-plex targeted metabolite assay covering >366 metabolic pathways. Metabolite levels were compared to 2-year neurodevelopmental outcomes measured by the Bayley Scales of Infant and Toddler Development III (Bayley-III). RESULTS: Out of 193 metabolites, 57 met the pre-defined quality control criteria for analysis. Significant (after false discovery rate correction) KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways included aminoacyl-tRNA biosynthesis, arginine biosynthesis, and metabolism of multiple amino acids. Significant disease pathways included seizures. In regression models, histidine and C6 sugar amine were significantly associated with cognitive, motor, and language and betaine with cognitive and motor Bayley-III composite scores. The addition of histidine, C6 sugar amine, and betaine to a Sarnat score-based clinical regression model significantly improved model performance (Akaike information criterion and adjusted r2) for Bayley-III cognitive, motor, and language scores. CONCLUSIONS: Plasma metabolites may help to predict neurological outcomes in neonatal brain injury and enhance current clinical predictors. IMPACT: Plasma metabolites may help to predict neurological outcomes in NE and supplement current clinical predictors. Current metabolomics research is limited in terms of clinical application and association with long-term outcomes. Our study presents novel associations of plasma metabolites from the first 24 h of life and 2-year neurodevelopmental outcomes for infants with NE. Our metabolomics discovery provides insight into possible disease mechanisms and methods to rescue and/or supplement metabolic pathways involved in NE. Our metabolomics discovery of metabolic pathway supplementations and/or rescue mechanisms may serve as adjunctive therapies for NE.


Asunto(s)
Lesiones Encefálicas , Enfermedades del Recién Nacido , Arginina , Betaína , Histidina , Humanos , Lactante , Recién Nacido , Metabolómica , ARN de Transferencia , Azúcares , Espectrometría de Masas en Tándem
14.
Dig Dis Sci ; 67(3): 863-871, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33738671

RESUMEN

BACKGROUND: Neonates are at risk of gastrointestinal emergencies including necrotizing enterocolitis (NEC) and spontaneous intestinal perforation (SIP). Identifying biomarkers to aid in diagnosis is imperative. We hypothesized that circulating intestinal-specific protein concentrations would distinguish infants with intestinal injury from controls. AIMS: To identify serum concentrations of intestinal-specific protein(s) in infants with intestinal injury and controls. METHODS: We used an in silico approach to identify intestinal-specific proteins. We collected serum from control infants and infants with NEC or SIP and measured protein concentrations using ELISA. If baseline concentrations were near the detection limit in initial control assays, we proceeded to assess concentrations in a larger cohort of controls and infants with injury. Control infants were frequency matched to infants with injury and compared with nonparametric and mixed-effects models analysis. RESULTS: We evaluated four proteins with high intestinal expression: Galectin-4 (Gal-4), S100G, Trefoil Factor-3, and alanyl aminopeptidase. Only Gal-4 demonstrated consistent results near the lower limit of quantification in controls and was studied in the larger cohorts. Gal-4 concentration was low in 111 control infants (median 0.012 ng/ml). By contrast, Gal-4 was significantly increased at diagnosis in infants with surgical NEC and SIP (n = 14, p ≤ 0.001 and n = 8, p = 0.031) compared to matched controls, but not in infants with medical NEC (n = 32, p = 0.10). CONCLUSIONS: Of the intestinal-specific proteins evaluated, circulating Gal-4 concentrations were at the assay detection limit in control infants. Gal-4 concentrations were significantly elevated in infants with surgical NEC or SIP, suggesting that Gal-4 may serve as a biomarker for neonatal intestinal injury.


Asunto(s)
Traumatismos Abdominales , Enterocolitis Necrotizante , Perforación Intestinal , Biomarcadores , Enterocolitis Necrotizante/diagnóstico , Galectina 4 , Humanos , Lactante , Recién Nacido , Perforación Intestinal/cirugía , Intestinos
15.
Pediatr Res ; 90(6): 1228-1234, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33654280

RESUMEN

BACKGROUND: Neonatal encephalopathy (NE) is a major cause of long-term neurodevelopmental disability in neonates. We evaluated the ability of serially measured biomarkers of brain injury to predict adverse neurological outcomes in this population. METHODS: Circulating brain injury biomarkers including BDNF, IL-6, IL-8, IL-10, VEGF, Tau, GFAP, and NRGN were measured at 0, 12, 24, 48, 72, and 96 h of cooling from 103 infants with NE undergoing TH. The biomarkers' individual and combinative ability to predict death or severe brain injury and adverse neurodevelopmental outcomes beyond 1 year of age was assessed. RESULTS: Early measurements of inflammatory cytokines IL-6, 8, and 10 within 24 HOL (AUC = 0.826) and late measurements of Tau from 72 to 96 HOL (AUC = 0.883, OR 4.37) were accurate in predicting severe brain injury seen on MRI. Late measurements of Tau were predictive of adverse neurodevelopmental outcomes (AUC = 0.81, OR 2.59). CONCLUSIONS: Tau was consistently a predictive marker for brain injury in neonates with NE. However, in the first 24 HOL, IL-6, 8, and 10 in combination were most predictive of death or severe brain injury. The results of this study support the use of a serial biomarker panel to assess brain injury over the time course of disease in NE. IMPACT: While recent studies have evaluated candidate brain injury biomarkers, no biomarker is in current clinical use. This study supports the use of a serial biomarker panel for ongoing assessment of brain injury neonates with NE. In combination, IL6, IL8, and IL10 in the first 24 h of cooling were more predictive of brain injury by MRI than each cytokine alone. Individually, Tau was overall most consistently predictive of adverse neurological outcomes, particularly when measured at or after rewarming.


Asunto(s)
Hipotermia Inducida , Hipoxia-Isquemia Encefálica/terapia , Biomarcadores/sangre , Citocinas/sangre , Humanos , Hipoxia-Isquemia Encefálica/sangre , Hipoxia-Isquemia Encefálica/diagnóstico por imagen , Lactante , Límite de Detección , Imagen por Resonancia Magnética , Estudios Prospectivos
16.
J Card Surg ; 36(11): 4213-4223, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34472654

RESUMEN

OBJECTIVE: Several short-term readmission and mortality prediction models have been developed using clinical risk factors or biomarkers among patients undergoing coronary artery bypass graft (CABG) surgery. The use of biomarkers for long-term prediction of readmission and mortality is less well understood. Given the established association of cardiac biomarkers with short-term adverse outcomes, we hypothesized that 5-year prediction of readmission or mortality may be significantly improved using cardiac biomarkers. MATERIALS AND METHODS: Plasma biomarkers from 1149 patients discharged alive after isolated CABG surgery from eight medical centers were measured in a cohort from the Northern New England Cardiovascular Disease Study Group between 2004 and 2007. We assessed the added predictive value of a biomarker panel with a clinical model against the clinical model alone and compared the model discrimination using the area under the receiver operating characteristic (AUROC) curves. RESULTS: In our cohort, 461 (40%) patients were readmitted or died within 5 years. Long-term outcomes were predicted by applying the STS ASCERT clinical model with an AUROC of 0.69. The biomarker panel with the clinical model resulted in a significantly improved AUROC of 0.74 (p value <.0001). Across 5 years, the hazard ratio for patients in the second to fifth quintile predicted probabilities from the biomarker augmented STS ASCERT model ranged from 2.2 to 7.9 (p values <.001). CONCLUSIONS: We report that a panel of biomarkers significantly improved prediction of long-term readmission or mortality risk following CABG surgery. Our findings suggest biomarkers help clinical care teams better assess the long-term risk of readmission or mortality.


Asunto(s)
Puente de Arteria Coronaria , Readmisión del Paciente , Biomarcadores , Mortalidad Hospitalaria , Humanos , Curva ROC , Factores de Riesgo
17.
Cardiol Young ; 31(7): 1057-1188, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34323211

RESUMEN

Substantial progress has been made in the standardization of nomenclature for paediatric and congenital cardiac care. In 1936, Maude Abbott published her Atlas of Congenital Cardiac Disease, which was the first formal attempt to classify congenital heart disease. The International Paediatric and Congenital Cardiac Code (IPCCC) is now utilized worldwide and has most recently become the paediatric and congenital cardiac component of the Eleventh Revision of the International Classification of Diseases (ICD-11). The most recent publication of the IPCCC was in 2017. This manuscript provides an updated 2021 version of the IPCCC.The International Society for Nomenclature of Paediatric and Congenital Heart Disease (ISNPCHD), in collaboration with the World Health Organization (WHO), developed the paediatric and congenital cardiac nomenclature that is now within the eleventh version of the International Classification of Diseases (ICD-11). This unification of IPCCC and ICD-11 is the IPCCC ICD-11 Nomenclature and is the first time that the clinical nomenclature for paediatric and congenital cardiac care and the administrative nomenclature for paediatric and congenital cardiac care are harmonized. The resultant congenital cardiac component of ICD-11 was increased from 29 congenital cardiac codes in ICD-9 and 73 congenital cardiac codes in ICD-10 to 318 codes submitted by ISNPCHD through 2018 for incorporation into ICD-11. After these 318 terms were incorporated into ICD-11 in 2018, the WHO ICD-11 team added an additional 49 terms, some of which are acceptable legacy terms from ICD-10, while others provide greater granularity than the ISNPCHD thought was originally acceptable. Thus, the total number of paediatric and congenital cardiac terms in ICD-11 is 367. In this manuscript, we describe and review the terminology, hierarchy, and definitions of the IPCCC ICD-11 Nomenclature. This article, therefore, presents a global system of nomenclature for paediatric and congenital cardiac care that unifies clinical and administrative nomenclature.The members of ISNPCHD realize that the nomenclature published in this manuscript will continue to evolve. The version of the IPCCC that was published in 2017 has evolved and changed, and it is now replaced by this 2021 version. In the future, ISNPCHD will again publish updated versions of IPCCC, as IPCCC continues to evolve.


Asunto(s)
Cardiopatías Congénitas , Clasificación Internacional de Enfermedades , Niño , Femenino , Humanos , Sistema de Registros , Sociedades Médicas , Organización Mundial de la Salud
18.
BMC Med ; 18(1): 268, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33019943

RESUMEN

BACKGROUND: Pulmonary arterial hypertension (PAH) is a fatal disease that results from cardio-pulmonary dysfunction with the pathology largely unknown. Insulin-like growth factor binding protein 2 (IGFBP2) is an important member of the insulin-like growth factor family, with evidence suggesting elevation in PAH patients. We investigated the diagnostic and prognostic value of serum IGFBP2 in PAH to determine if it could discriminate PAH from healthy controls and if it was associated with disease severity and survival. METHODS: Serum IGFBP2 levels, as well as IGF1/2 levels, were measured in two independent PAH cohorts, the Johns Hopkins Pulmonary Hypertension program (JHPH, N = 127), NHLBI PAHBiobank (PAHB, N = 203), and a healthy control cohort (N = 128). The protein levels in lung tissues were determined by western blot. The IGFBP2 mRNA expression levels in pulmonary artery smooth muscle cells (PASMC) and endothelial cells (PAEC) were assessed by RNA-seq, secreted protein levels by ELISA. Association of biomarkers with clinical variables was evaluated using adjusted linear or logistic regression and Kaplan-Meier analysis. RESULTS: In both PAH cohorts, serum IGFBP2 levels were significantly elevated (p < 0.0001) compared to controls and discriminated PAH from controls with an AUC of 0.76 (p < 0.0001). A higher IGFBP2 level was associated with a shorter 6-min walk distance (6MWD) in both cohorts after adjustment for age and sex (coefficient - 50.235 and - 57.336 respectively). Cox multivariable analysis demonstrated that higher serum IGFBP2 was a significant independent predictor of mortality in PAHB cohort only (HR, 3.92; 95% CI, 1.37-11.21). IGF1 levels were significantly increased only in the PAHB cohort; however, neither IGF1 nor IGF2 had equivalent levels of associations with clinical variables compared with IGFBP2. Western blotting shown that IGFBP2 protein was significantly increased in the PAH vs control lung tissues. Finally, IGFBP2 mRNA expression and secreted protein levels were significantly higher in PASMC than in PAEC. CONCLUSIONS: IGFBP2 protein expression was increased in the PAH lung, and secreted by PASMC. Elevated circulating IGFBP2 was associated with PAH severity and mortality and is a potentially valuable prognostic marker in PAH.


Asunto(s)
Biomarcadores/sangre , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Hipertensión Arterial Pulmonar/sangre , Anciano , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Humanos , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Masculino , Persona de Mediana Edad , Pronóstico , Hipertensión Arterial Pulmonar/mortalidad , Análisis de Supervivencia
19.
Eur Respir J ; 55(4)2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32029443

RESUMEN

The pro-inflammatory cytokine interleukin (IL)-6 has been associated with outcomes in small pulmonary arterial hypertension (PAH) cohorts composed largely of patients with severe idiopathic PAH (IPAH). It is unclear whether IL-6 is a marker of critical illness or a mechanistic biomarker of pulmonary vascular remodelling. We hypothesised that IL-6 is produced by pulmonary vascular cells and sought to explore IL-6 associations with phenotypes and outcomes across diverse subtypes in a large PAH cohort.IL-6 protein and gene expression levels were measured in cultured pulmonary artery smooth muscle cells (PASMCs) and endothelial cells (PAECs) from PAH patients and healthy controls. Serum IL-6 was measured in 2017 well-characterised PAH subjects representing each PAH subgroup. Relationships between IL-6 levels, clinical variables, and mortality were analysed using regression models.Significantly higher IL-6 protein and gene expression levels were produced by PASMCs than by PAECs in PAH (p<0.001), while there was no difference in IL-6 between cell types in controls. Serum IL-6 was highest in PAH related to portal hypertension and connective tissue diseases (CTD-PAH). In multivariable modelling, serum IL-6 was associated with survival in the overall cohort (hazard ratio 1.22, 95% CI 1.08-1.38; p<0.01) and in IPAH, but not in CTD-PAH. IL-6 remained associated with survival in low-risk subgroups of subjects with mild disease.IL-6 is released from PASMCs, and circulating IL-6 is associated with specific clinical phenotypes and outcomes in various PAH subgroups, including subjects with less severe disease. IL-6 is a mechanistic biomarker, and thus a potential therapeutic target, in certain PAH subgroups.


Asunto(s)
Interleucina-6/genética , Hipertensión Arterial Pulmonar/genética , Células Endoteliales , Humanos , Miocitos del Músculo Liso , Fenotipo , Arteria Pulmonar
20.
Am Heart J ; 220: 253-263, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31911262

RESUMEN

BACKGROUND: Cardiac surgery induces hemodynamic stress on the myocardium, and this process can be associated with significant post-operative morbidity and mortality. Soluble suppression of tumorigenicity 2 (sST2) and galectin-3 (gal-3) are biomarkers of myocardial remodeling and fibrosis; however, their potential association with post-operative changes is unknown. METHODS: We measured peri-operative plasma sST2 and gal-3 levels in two prospective cohorts (TRIBE-AKI and NNE) of over 1800 patients who underwent cardiac surgery. sST2 and gal-3 levels were evaluated for association with a composite primary outcome of cardiovascular event or mortality over median follow-up periods of 3.4 and 6.0 years, respectively, for the two cohorts. Meta-analysis of hazard ratio estimates from the cohorts was performed using random effects models. RESULTS: Cohorts demonstrated event rates of 70.2 and 66.8 per 1000 person-years for the primary composite outcome. After adjustment for clinical covariates, higher post-operative sST2 and gal-3 levels were significantly associated with cardiovascular event or mortality [pooled estimate HRs: sST2 1.29 (95% CI 1.16, 1.44); gal-3 1.26 (95% CI 1.09, 1.46)]. These associations were not significantly modified by pre-operative congestive heart failure or AKI. CONCLUSIONS: Higher post-operative sST2 and gal-3 values were associated with increased incidence of cardiovascular event or mortality. These two biomarkers should be further studied for potential clinical utility for patients undergoing cardiac surgery.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos/efectos adversos , Enfermedades Cardiovasculares/sangre , Galectina 3/sangre , Proteína 1 Similar al Receptor de Interleucina-1/sangre , Complicaciones Posoperatorias/sangre , Lesión Renal Aguda/sangre , Lesión Renal Aguda/etiología , Anciano , Biomarcadores/sangre , Proteínas Sanguíneas , Procedimientos Quirúrgicos Cardíacos/mortalidad , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/mortalidad , Causas de Muerte , Estudios de Cohortes , Puente de Arteria Coronaria/efectos adversos , Femenino , Galectinas , Implantación de Prótesis de Válvulas Cardíacas/efectos adversos , Humanos , Masculino , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/mortalidad , Estudios Prospectivos , Remodelación Ventricular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA