Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Microcirculation ; 31(2): e12840, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38082450

RESUMEN

INTRODUCTION: Age-related blood-brain barrier (BBB) disruption, cerebromicrovascular senescence, and microvascular rarefaction substantially contribute to the pathogenesis of vascular cognitive impairment (VCI) and Alzheimer's disease (AD). Previous studies established a causal link between age-related decline in circulating levels of insulin-like growth factor-1 (IGF-1), cerebromicrovascular dysfunction, and cognitive decline. The aim of our study was to determine the effect of IGF-1 signaling on senescence, BBB permeability, and vascular density in middle-age and old brains. METHODS: Accelerated endothelial senescence was assessed in senescence reporter mice (VE-Cadherin-CreERT2 /Igf1rfl/fl × p16-3MR) using flow cytometry. To determine the functional consequences of impaired IGF-1 input to cerebromicrovascular endothelial cells, BBB integrity and capillary density were studied in mice with endothelium-specific knockout of IGF1R (VE-Cadherin-CreERT2 /Igf1rfl/fl ) using intravital two-photon microscopy. RESULTS: In VE-Cadherin-CreERT2 /Igf1rfl/fl mice: (1) there was an increased presence of senescent endothelial cells; (2) cumulative permeability of the microvessels to fluorescent tracers of different molecular weights (0.3-40 kDa) is significantly increased, as compared to that of control mice, whereas decline in cortical capillary density does not reach statistical significance. CONCLUSIONS: These findings support the notion that IGF-1 signaling plays a crucial role in preserving a youthful cerebromicrovascular endothelial phenotype and maintaining the integrity of the BBB.


Asunto(s)
Barrera Hematoencefálica , Factor I del Crecimiento Similar a la Insulina , Animales , Ratones , Barrera Hematoencefálica/patología , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Péptidos Similares a la Insulina , Células Endoteliales/metabolismo , Envejecimiento/patología , Encéfalo/irrigación sanguínea , Fenotipo , Endotelio , Senescencia Celular
2.
Geroscience ; 46(1): 21-37, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38044400

RESUMEN

Emerging evidence from both clinical and preclinical studies underscores the role of aging in potentiating the detrimental effects of hypertension on cerebral microhemorrhages (CMHs, or cerebral microbleeds). CMHs progressively impair neuronal function and contribute to the development of vascular cognitive impairment and dementia. There is growing evidence showing accumulation of senescent cells within the cerebral microvasculature during aging, which detrimentally affects cerebromicrovascular function and overall brain health. We postulated that this build-up of senescent cells renders the aged cerebral microvasculature more vulnerable, and consequently, more susceptible to CMHs. To investigate the role of cellular senescence in CMHs' pathogenesis, we subjected aged mice, both with and without pre-treatment with the senolytic agent ABT263/Navitoclax, and young control mice to hypertension via angiotensin-II and L-NAME administration. The aged cohort exhibited a markedly earlier onset, heightened incidence, and exacerbated neurological consequences of CMHs compared to their younger counterparts. This was evidenced through neurological examinations, gait analysis, and histological assessments of CMHs in brain sections. Notably, the senolytic pre-treatment wielded considerable cerebromicrovascular protection, effectively delaying the onset, mitigating the incidence, and diminishing the severity of CMHs. These findings hint at the potential of senolytic interventions as a viable therapeutic avenue to preempt or alleviate the consequences of CMHs linked to aging, by counteracting the deleterious effects of senescence on brain microvasculature.


Asunto(s)
Compuestos de Anilina , Hipertensión , Senoterapéuticos , Sulfonamidas , Humanos , Ratones , Animales , Anciano , Envejecimiento/patología , Senescencia Celular
3.
Geroscience ; 46(1): 327-347, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38123890

RESUMEN

Age-related impairment of neurovascular coupling (NVC; "functional hyperemia") is a critical factor in the development of vascular cognitive impairment (VCI). Recent geroscience research indicates that cell-autonomous mechanisms alone cannot explain all aspects of neurovascular aging. Circulating factors derived from other organs, including pro-geronic factors (increased with age and detrimental to vascular homeostasis) and anti-geronic factors (preventing cellular aging phenotypes and declining with age), are thought to orchestrate cellular aging processes. This study aimed to investigate the influence of age-related changes in circulating factors on neurovascular aging. Heterochronic parabiosis was utilized to assess how exposure to young or old systemic environments could modulate neurovascular aging. Results demonstrated a significant decline in NVC responses in aged mice subjected to isochronic parabiosis (20-month-old C57BL/6 mice [A-(A)]; 6 weeks of parabiosis) when compared to young isochronic parabionts (6-month-old, [Y-(Y)]). However, exposure to young blood from parabionts significantly improved NVC in aged heterochronic parabionts [A-(Y)]. Conversely, young mice exposed to old blood from aged parabionts exhibited impaired NVC responses [Y-(A)]. In conclusion, even a brief exposure to a youthful humoral environment can mitigate neurovascular aging phenotypes, rejuvenating NVC responses. Conversely, short-term exposure to an aged humoral milieu in young mice accelerates the acquisition of neurovascular aging traits. These findings highlight the plasticity of neurovascular aging and suggest the presence of circulating anti-geronic factors capable of rejuvenating the aging cerebral microcirculation. Further research is needed to explore whether young blood factors can extend their rejuvenating effects to address other age-related cerebromicrovascular pathologies, such as blood-brain barrier integrity.


Asunto(s)
Acoplamiento Neurovascular , Ratones , Animales , Acoplamiento Neurovascular/fisiología , Rejuvenecimiento , Ratones Endogámicos C57BL , Envejecimiento/fisiología , Parabiosis
4.
Geroscience ; 45(5): 2851-2872, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37338779

RESUMEN

Cerebral microhemorrhages (CMHs, microbleeds), a manifestation of age-related cerebral small vessel disease, contribute to the pathogenesis of cognitive decline and dementia in older adults. Histological studies have revealed that CMHs exhibit distinct morphologies, which may be attributed to differences in intravascular pressure and the size of the vessels of origin. Our study aimed to establish a direct relationship between the size/morphology of CMHs and the size/anatomy of the microvessel of origin. To achieve this goal, we adapted and optimized intravital two-photon microscopy-based imaging methods to monitor the development of CMHs in mice equipped with a chronic cranial window upon high-energy laser light-induced photodisruption of a targeted cortical arteriole, capillary, or venule. We assessed the time course of extravasation of fluorescently labeled blood and determined the morphology and size/volume of the induced CMHs. Our findings reveal striking similarities between the bleed morphologies observed in hypertension-induced CMHs in models of aging and those originating from different targeted vessels via multiphoton laser ablation. Arteriolar bleeds, which are larger (> 100 µm) and more widely dispersed, are distinguished from venular bleeds, which are smaller and exhibit a distinct diffuse morphology. Capillary bleeds are circular and smaller (< 10 µm) in size. Our study supports the concept that CMHs can occur at any location in the vascular tree, and that each type of vessel produces microbleeds with a distinct morphology. Development of CMHs resulted in immediate constriction of capillaries, likely due to pericyte activation and constriction of precapillary arterioles. Additionally, tissue displacement observed in association with arteriolar CMHs suggests that they can affect an area with a radius of ~ 50 µm to ~ 100 µm, creating an area at risk for ischemia. Longitudinal imaging of CMHs allowed us to visualize reactive astrocytosis and bleed resolution during a 30-day period. Our study provides new insights into the development and morphology of CMHs, highlighting the potential clinical implications of differentiating between the types of vessels involved in the pathogenesis of CMHs. This information may help in the development of targeted interventions aimed at reducing the risk of cerebral small vessel disease-related cognitive decline and dementia in older adults.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Demencia , Ratones , Animales , Arteriolas/diagnóstico por imagen , Vénulas , Capilares/diagnóstico por imagen , Microscopía , Hemorragia Cerebral/etiología , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Demencia/complicaciones
5.
Aging Cell ; 22(7): e13832, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37243381

RESUMEN

Chemotherapy-induced cognitive impairment ("chemobrain") is a frequent side-effect in cancer survivors treated with paclitaxel (PTX). The mechanisms responsible for PTX-induced cognitive impairment remain obscure, and there are no effective treatments or prevention strategies. Here, we test the hypothesis that PTX induces endothelial senescence, which impairs microvascular function and contributes to the genesis of cognitive decline. We treated transgenic p16-3MR mice, which allows the detection and selective elimination of senescent cells, with PTX (5 mg/kg/day, 2 cycles; 5 days/cycle). PTX-treated and control mice were tested for spatial memory performance, neurovascular coupling (NVC) responses (whisker-stimulation-induced increases in cerebral blood flow), microvascular density, blood-brain barrier (BBB) permeability and the presence of senescent endothelial cells (by flow cytometry and single-cell transcriptomics) at 6 months post-treatment. PTX induced senescence in endothelial cells, which associated with microvascular rarefaction, NVC dysfunction, BBB disruption, neuroinflammation, and impaired performance on cognitive tasks. To establish a causal relationship between PTX-induced senescence and impaired microvascular functions, senescent cells were depleted from PTX-treated animals (at 3 months post-treatment) by genetic (ganciclovir) or pharmacological (treatment with the senolytic drug ABT263/Navitoclax) means. In PTX treated mice, both treatments effectively eliminated senescent endothelial cells, rescued endothelium-mediated NVC responses and BBB integrity, increased capillarization and improved cognitive performance. Our findings suggest that senolytic treatments can be a promising strategy for preventing chemotherapy-induced cognitive impairment.


Asunto(s)
Deterioro Cognitivo Relacionado con la Quimioterapia , Disfunción Cognitiva , Ratones , Animales , Células Endoteliales , Paclitaxel/efectos adversos , Senoterapéuticos , Modelos Animales de Enfermedad
6.
Geroscience ; 44(2): 661-681, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35098444

RESUMEN

There is strong evidence that aging is associated with an increased presence of senescent cells in the brain. The finding that treatment with senolytic drugs improves cognitive performance of aged laboratory mice suggests that increased cellular senescence is causally linked to age-related cognitive decline. The relationship between senescent cells and their relative locations within the brain is critical to understanding the pathology of age-related cognitive decline and dementia. To assess spatial distribution of cellular senescence in the aged mouse brain, spatially resolved whole transcriptome mRNA expression was analyzed in sections of brains derived from young (3 months old) and aged (28 months old) C57BL/6 mice while capturing histological information in the same tissue section. Using this spatial transcriptomics (ST)-based method, microdomains containing senescent cells were identified on the basis of their senescence-related gene expression profiles (i.e., expression of the senescence marker cyclin-dependent kinase inhibitor p16INK4A encoded by the Cdkn2a gene) and were mapped to different anatomical brain regions. We confirmed that brain aging is associated with increased cellular senescence in the white matter, the hippocampi and the cortical grey matter. Transcriptional analysis of the senescent cell-containing ST spots shows that presence of senescent cells is associated with a gene expression signature suggestive of neuroinflammation. GO enrichment analysis of differentially expressed genes in the outer region of senescent cell-containing ST spots ("neighboring ST spots") also identified functions related to microglia activation and neuroinflammation. In conclusion, senescent cells accumulate with age in the white matter, the hippocampi and cortical grey matter and likely contribute to the genesis of inflammatory foci in a paracrine manner.


Asunto(s)
Transcriptoma , Sustancia Blanca , Animales , Encéfalo , Senescencia Celular/genética , Sustancia Gris , Ratones , Ratones Endogámicos C57BL
7.
Geroscience ; 44(2): 805-816, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34989944

RESUMEN

Cerebral microhemorrhages (CMHs; microbleeds), which are small focal intracerebral hemorrhages, importantly contribute to the pathogenesis of cognitive decline and dementia in older adults. Although recently it has been increasingly recognized that the venous side of the cerebral circulation likely plays a fundamental role in the pathogenesis of a wide spectrum of cerebrovascular and brain disorders, its role in the pathogenesis of CMHs has never been studied. The present study was designed to experimentally test the hypothesis that venous congestion can exacerbate the genesis of CMHs. Increased cerebral venous pressure was induced by internal and external jugular vein ligation (JVL) in C57BL/6 mice in which systemic hypertension was induced by treatment with angiotensin II plus L-NAME. Histological analysis (diaminobenzidine staining) showed that mice with JVL developed multiple CMHs. CMHs in mice with JVL were often localized adjacent to veins and venules and their morphology was consistent with venous origin of the bleeds. In brains of mice with JVL, a higher total count of CMHs was observed compared to control mice. CMHs were distributed widely in the brain of mice with JVL, including the cortical gray matter, brain stem, the basal ganglia, subcortical white matter, cerebellum, and the hippocampi. In mice with JVL, there were more CMHs predominantly in cerebral cortex, brain stem, and cerebellum than in control mice. CMH burden, defined as total CMH volume, also significantly increased in mice with JVL. Thus, cerebral venous congestion can exacerbate CMHs. These observations have relevance to the pathogenesis of cognitive impairment associated with right heart failure as well as elevated cerebral venous pressure due to jugular venous reflux in older adults.


Asunto(s)
Disfunción Cognitiva , Hiperemia , Animales , Hemorragia Cerebral/etiología , Circulación Cerebrovascular , Disfunción Cognitiva/etiología , Ratones , Ratones Endogámicos C57BL
8.
Am J Nucl Med Mol Imaging ; 11(5): 363-373, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34754607

RESUMEN

The blood-brain barrier (BBB) is usually impermeable to several drugs, which hampers treatment of various brain-related diseases/disorders. There have been several approaches to open the BBB, including intracarotid infusion of hyperosmotic concentrations of arabinose, mannitol, oleic or linoleic acids, or alkylglycerols, intravenous infusion of bradykinin B2, administration of a fragment of the ZO toxin from vibrio cholera, targeting specific components of the tight junctions (e.g. claudin-5) with siRNA or novel peptidomimetic drugs, or the use of ultrasound with microbubbles. We propose the use of a low molecular weight (MW), nitrone-type compound, OKN-007, which can temporarily open up the BBB for 1-2 hours. Gadolinium (Gd)-based compounds assessed ranged in MW from 546 (Gd-DTPA) to 465 kDa (ß-galactosidase-Gd-DOTA). We also included an albumin-based CA (albumin-Gd-DTPA-biotin) for assessment, as well as an antibody (Ab) against a neuron-specific biomarker conjugated to Gd-DOTA (anti-EphB2-Gd-DOTA). For the anti-EphB2 (goat Ab)-Gd-DOTA assessment, we utilized an anti-goat Ab conjugated with horse radish peroxidase (HRP) for confirmation of the presence of the anti-EphB2-Gd-DOTA probe. In addition, a Cy5 labeled anti-EphB2 Ab was co-administered with the anti-EphB2-Gd-DOTA probe, and assessed ex vivo. This study demonstrates that OKN-007 may be able to temporarily open up the BBB to augment the delivery of various compounds ranging in MW from as small as ~550 to as large as ~470 kDa. This compound is an investigational new drug for glioblastoma (GBM) therapy in clinical trials. The translational capability for human use to augment the delivery of non-BBB-permeable drugs is extremely high.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA