Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Pharm ; 649: 123672, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052280

RESUMEN

The peptidyl-prolyl cis/trans isomerase Pin1 positively regulates numerous cancer-driving pathways, and it is overexpressed in several malignancies, including high-grade serous ovarian cancer (HGSOC). The findings that all-trans retinoic acid (ATRA) induces Pin1 degradation strongly support that ATRA treatment might be a promising approach for HGSOC targeted therapy. Nevertheless, repurposing ATRA into the clinics for the treatment of solid tumors remains an unmet need mainly due to the insurgence of resistance and its ineffective delivery. In the present study, niosomes have been employed for improving ATRA delivery in HGSOC cell lines. Characterization of niosomes including hydrodynamic diameter, ζ-potential, morphology, entrapment efficiency and stability over time and in culture media was performed. Furthermore, pH-sensitiveness and ATRA release profile were investigated to demonstrate the capability of these vesicles to release ATRA in a stimuli-responsive manner. Obtained results documented a nanometric and monodispersed samples with negative ζ-potential. ATRA was efficiently entrapped, and a substantial release was observed in the presence of acidic pH (pH 5.5). Finally, unloaded niosomes showed good biocompatibility while ATRA-loaded niosomes significantly increased ATRA Pin1 inhibitory activity, which was consistent with cell growth inhibition. Taken together, ATRA-loaded niosomes might represent an appealing therapeutic strategy for HGSOC therapy.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Humanos , Femenino , Liposomas/uso terapéutico , Tretinoina/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Concentración de Iones de Hidrógeno
2.
Sci Rep ; 14(1): 10196, 2024 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702355

RESUMEN

Urinary tract infections (UTIs) are the most common bacterial infections and uropathogenic Escherichia coli (UPEC) is the main etiological agent of UTIs. UPEC can persist in bladder cells protected by immunological defenses and antibiotics and intracellular behavior leads to difficulty in eradicating the infection. The aim of this paper is to design, prepare and characterize surfactant-based nanocarriers (niosomes) able to entrap antimicrobial drug and potentially to delivery and release antibiotics into UPEC-infected cells. In order to validate the proposed drug delivery system, gentamicin, was chosen as "active model drug" due to its poor cellular penetration. The niosomes physical-chemical characterization was performed combining different techniques: Dynamic Light Scattering Fluorescence Spectroscopy, Transmission Electron Microscopy. Empty and loaded niosomes were characterized in terms of size, ζ-potential, bilayer features and stability. Moreover, Gentamicin entrapped amount was evaluated, and the release study was also carried out. In addition, the effect of empty and loaded niosomes was studied on the invasion ability of UPEC strains in T24 bladder cell monolayers by Gentamicin Protection Assay and Confocal Microscopy. The observed decrease in UPEC invasion rate leads us to hypothesize a release of antibiotic from niosomes inside the cells. The optimization of the proposed drug delivery system could represent a promising strategy to significatively enhance the internalization of antimicrobial drugs.


Asunto(s)
Antibacterianos , Gentamicinas , Liposomas , Escherichia coli Uropatógena , Gentamicinas/farmacología , Escherichia coli Uropatógena/efectos de los fármacos , Humanos , Antibacterianos/farmacología , Portadores de Fármacos/química , Infecciones Urinarias/microbiología , Infecciones Urinarias/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Pruebas de Sensibilidad Microbiana
3.
Biomolecules ; 13(6)2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37371504

RESUMEN

Mycobacterium abscessus (Mabs) is a dangerous non-tubercular mycobacterium responsible for severe pulmonary infections in immunologically vulnerable patients, due to its wide resistance to many different antibiotics which make its therapeutic management extremely difficult. Drug nanocarriers as liposomes may represent a promising delivery strategy against pulmonary Mabs infection, due to the possibility to be aerosolically administrated and to tune their properties in order to increase nebulization resistance and retainment of encapsulated drug. In fact, liposome surface can be modified by decoration with mucoadhesive polymers to enhance its stability, mucus penetration and prolong its residence time in the lung. The aim of this work is to employ Chitosan or ε-poly-L-lysine decoration for improving the properties of a novel liposomes composed by hydrogenated phosphatidyl-choline from soybean (HSPC) and anionic 1,2-Dipalmitoyl-sn-glycero-3-phosphorylglycerol sodium salt (DPPG) able to entrap Rifampicin. A deep physicochemical characterization of polymer-decorated liposomes shows that both polymers improve mucoadhesion without affecting liposome features and Rifampicin entrapment efficiency. Therapeutic activity on Mabs-infected macrophages demonstrates an effective antibacterial effect of ε-poly-L-lysine liposomes with respect to chitosan-decorated ones. Altogether, these results suggest a possible use of ε-PLL liposomes to improve antibiotic delivery in the lung.


Asunto(s)
Quitosano , Mycobacterium abscessus , Humanos , Liposomas/química , Rifampin/farmacología , Rifampin/uso terapéutico , Polilisina , Quitosano/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Polímeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA