RESUMEN
The recent reemergence of yellow fever virus (YFV) in Brazil has raised serious concerns due to the rapid dissemination of the virus in the southeastern region. To better understand YFV genetic diversity and dynamics during the recent outbreak in southeastern Brazil, we generated 18 complete and nearly complete genomes from the peak of the epidemic curve from nonhuman primates (NHPs) and human infected cases across the Espírito Santo and Rio de Janeiro states. Genomic sequencing of 18 YFV genomes revealed the estimated timing, source, and likely routes of yellow fever virus transmission and dispersion during one of the largest outbreaks ever registered in Brazil. We showed that during the recent epidemic, YFV was reintroduced from Minas Gerais to the Espírito Santo and Rio de Janeiro states multiple times between 2016 and 2019. The analysis of data from portable sequencing could identify the corridor of spread of YFV. These findings reinforce the idea that continued genomic surveillance strategies can provide information on virus genetic diversity and transmission dynamics that might assist in understanding arbovirus epidemics.IMPORTANCE Arbovirus infections in Brazil, including yellow fever, dengue, zika, and chikungunya, result in considerable morbidity and mortality and are pressing public health concerns. However, our understanding of these outbreaks is hampered by the limited availability of genomic data. In this study, we investigated the genetic diversity and spatial distribution of YFV during the current outbreak by analyzing genomic data from areas in southeastern Brazil not covered by other previous studies. To gain insights into the routes of YFV introduction and dispersion, we tracked the virus by sequencing YFV genomes sampled from nonhuman primates and infected patients from the southeastern region. Our study provides an understanding of how YFV initiates transmission in new Brazilian regions and illustrates that genomics in the field can augment traditional approaches to infectious disease surveillance and control.
Asunto(s)
Brotes de Enfermedades , Genoma Viral , Fiebre Amarilla/epidemiología , Fiebre Amarilla/transmisión , Virus de la Fiebre Amarilla/genética , Aedes/virología , Alouatta/virología , Animales , Brasil/epidemiología , Callithrix/virología , Cebus/virología , Femenino , Variación Genética , Humanos , Incidencia , Leontopithecus/virología , Masculino , Mosquitos Vectores/virología , Filogenia , Filogeografía , Secuenciación Completa del Genoma , Fiebre Amarilla/virología , Virus de la Fiebre Amarilla/clasificación , Virus de la Fiebre Amarilla/aislamiento & purificación , Virus de la Fiebre Amarilla/patogenicidadRESUMEN
BACKGROUND: Chikungunya can cause persistent chronic joint pain. Knowledge of the risk factors for disease progression is important for preventing and controlling complications. This study aimed to identify factors associated with chronic joint pain. METHODS: This prospective cohort study was conducted at a reference center in Rio de Janeiro. Men and women (aged ≥ 18 years) in the acute phase of Chikungunya were included. Clinical data and samples were collected over three months. Risk factors were evaluated using multivariate and logistic regression analyses. RESULTS: A total of 107 patients were followed up. The incidence rate of joint tenderness was 61.7 %. Female sex (adjusted odds ratio [AOR] 3.24, 95 % confidence interval [CI]:1.07-9.77), diarrhea (AOR 5.08, 95 % CI:1.55-16.67), severe joint pain (AOR 4.26, 95 % CI:1.06-17.06), and CHIKV real-time reverse transcription polymerase chain reaction positivity up to 5 days after the onset of symptoms in urine or saliva (AOR 4.56, 95 % CI:1.41-14.77) were identified as predictors of persistent chronic pain. CONCLUSIONS: In a predominantly female population, musculoskeletal symptoms are not the sole determinant of chronic pain, and careful evaluation of CHIKV detection in alternative body fluids (such as saliva and urine) during the early phase of the disease is warranted.
Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Dolor Crónico , Masculino , Humanos , Femenino , Fiebre Chikungunya/complicaciones , Fiebre Chikungunya/epidemiología , Fiebre Chikungunya/diagnóstico , Virus Chikungunya/genética , Dolor Crónico/etiología , Dolor Crónico/complicaciones , Estudios Prospectivos , Brasil/epidemiología , Artralgia/epidemiología , Artralgia/etiologíaRESUMEN
Despite the considerable morbidity and mortality of yellow fever virus (YFV) infections in Brazil, our understanding of disease outbreaks is hampered by limited viral genomic data. Here, through a combination of phylogenetic and epidemiological models, we reconstructed the recent transmission history of YFV within different epidemic seasons in Brazil. A suitability index based on the highly domesticated Aedes aegypti was able to capture the seasonality of reported human infections. Spatial modeling revealed spatial hotspots with both past reporting and low vaccination coverage, which coincided with many of the largest urban centers in the Southeast. Phylodynamic analysis unraveled the circulation of three distinct lineages and provided proof of the directionality of a known spatial corridor that connects the endemic North with the extra-Amazonian basin. This study illustrates that genomics linked with eco-epidemiology can provide new insights into the landscape of YFV transmission, augmenting traditional approaches to infectious disease surveillance and control.
Asunto(s)
Fiebre Amarilla , Virus de la Fiebre Amarilla , Humanos , Virus de la Fiebre Amarilla/genética , Filogenia , Brasil/epidemiología , Fiebre Amarilla/epidemiología , Brotes de Enfermedades , GenómicaRESUMEN
Since the introduction of the Zika virus (ZIKV) into Brazil in 2015, its transmission dynamics have been intensively studied in many parts of the country, although much is still unknown about its circulation in the midwestern states. Here, using nanopore technology, we obtained 23 novel partial and near-complete ZIKV genomes from the state of Goiás, located in the Midwest of Brazil. Genomic, phylogenetic, and epidemiological approaches were used to retrospectively explore the spatiotemporal evolution of the ZIKV-Asian genotype in this region. As a likely consequence of a gradual accumulation of herd immunity, epidemiological data revealed a decline in the number of reported cases over 2018 to 2021. Phylogenetic reconstructions revealed that multiple independent introductions of the Asian lineage have occurred in Goiás over time and revealed a complex transmission dynamic between epidemic seasons. Together, our results highlight the utility of genomic, epidemiological, and evolutionary methods to understand mosquito-borne epidemics. IMPORTANCE Despite the considerable morbidity and mortality of arboviral infections in Brazil, such as Zika, chikungunya, dengue fever, and yellow fever, our understanding of these outbreaks is hampered by the limited availability of genomic data to track and control the epidemic. In this study, we provide a retrospective reconstruction of the Zika virus transmission dynamics in the state of Goiás by analyzing genomic data from areas in Midwest Brazil not covered by other previous studies. Our study provides an understanding of how ZIKV initiates transmission in this region and reveals a complex transmission dynamic between epidemic seasons. Together, our results highlight the utility of genomic, epidemiological, and evolutionary methods to understand mosquito-borne epidemics, revealing how this toolkit can be used to help policymakers prioritize areas to be targeted, especially in the context of finite public health resources.
Asunto(s)
Infección por el Virus Zika , Virus Zika , Animales , Brasil/epidemiología , Filogenia , Estudios Retrospectivos , Virus Zika/genética , Infección por el Virus Zika/epidemiologíaRESUMEN
BACKGROUND: Chikungunya is a viral disease that is transmitted by mosquitoes. It is characterized by an acute onset of fever and severe arthralgia. METHODS: We describe six cases of acute and post-acute chikungunya in which viral RNA was detected in semen. CONCLUSIONS: The most prolonged detection period was 56 days after illness onset. We attempted to cultivate positive semen samples, but virus isolation was unsuccessful in all cases.
Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Animales , Virus Chikungunya/genética , Humanos , ARN Viral/genética , Semen , Esparcimiento de VirusRESUMEN
BACKGROUND: Chikungunya is a widely distributed, re-emerging tropical disease caused by the chikungunya virus (CHIKV). Little is known about the duration for which CHIK RNA are detectable in bodily fluids, especially genital secretions, and current evidence is based on small series or case reports. An understanding of viral dynamics across different body compartments can inform diagnostic testing algorithms and public health prevention interventions. METHODOLOGY: A prospective cohort study was conducted to assess the presence and duration of detectable levels of CHIKV RNA in blood, urine, saliva, semen, and vaginal secretions. Men and women (≥ 18 years) with a positive reverse transcriptase-polymerase chain reaction (RT-PCR) test for CHIKV in the acute phase (1-14 days) of the disease were included. After enrollment, clinical data and samples were collected every 15 days over the first 2 months, and a final collection was performed 3 months after recruitment. The Kaplan-Meier interval-censoring method and the parametric Weibull model were fitted to estimate the median time of viral persistence until the lack of CHIKV RNA detection among all body fluids. Punctual estimates of the median time of CHIKV RNA persistence for each fluid were estimated using a 95% confidence interval (CI). RESULTS: From April to December 2019, 170 participants were screened. Of these, 152 (100 women) were enrolled in the study. The median and interquartile range (IQR) ages for men and women were 39.3 (IQR: 26.9, 50.7) and 43.5 (IQR: 33.8, 53.6) years, respectively. CHIKV RNA was detected in 80.3% (122/152) of serum samples, 23.0% (35/152) of urine samples, 30.3% (46/152) of saliva samples, 14.3% (6/42) of semen samples, and 20.2% (20/99) of vaginal secretion samples. The median time until the loss of CHIKV RNA detection was 19.6 days (95% CI, 17.5-21.7) in serum, 25.3 days (95% CI, 17.8-32.8) in urine, 23.1 days (95% CI, 17.9-28.4) in saliva, and 25.8 days (95% CI, 20.6-31.1) in vaginal secretion. The number of semen samples available was too small to make statistical estimates, but a last positive sample was obtained from a participant 56 days after the onset of symptoms. CONCLUSIONS: CHIKV RNA could be detected in all bodily fluids studied, including genital secretions during the acute and convalescent phases and additional studies on viral infectivity in semen and vaginal secretions are warranted.
Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Fiebre Chikungunya/diagnóstico , Virus Chikungunya/genética , Estudios de Cohortes , Femenino , Humanos , Masculino , Estudios Prospectivos , ARN , ARN Viral/genéticaRESUMEN
Since introduction into Brazil in 2014, chikungunya virus (CHIKV) has presented sustained transmission, although much is unknown about its circulation in the midwestern states. Here, we analyze 24 novel partial and near complete CHIKV genomes from Cuiaba, an urban metropolis located in the Brazilian midwestern state of Mato Grosso (MT). Nanopore technology was used for sequencing CHIKV complete genomes. Phylogenetic and epidemiological approaches were used to explore the recent spatio-temporal evolution and spread of the CHIKV-ECSA genotype in Midwest Brazil as well as in the Americas. Epidemiological data revealed a reduction in the number of reported cases over 2018-2020, likely as a consequence of a gradual accumulation of herd-immunity. Phylogeographic reconstructions revealed that at least two independent introductions of the ECSA lineage occurred in MT from a dispersion event originating in the northeastern region and suggest that the midwestern Brazilian region appears to have acted as a source of virus transmission towards Paraguay, a bordering South American country. Our results show a complex dynamic of transmission between epidemic seasons and suggest a possible role of Brazil as a source for international dispersion of the CHIKV-ECSA genotype to other countries in the Americas.
Asunto(s)
Fiebre Chikungunya/epidemiología , Fiebre Chikungunya/transmisión , Virus Chikungunya/genética , Genoma Viral/genética , Adolescente , Adulto , Teorema de Bayes , Brasil/epidemiología , Fiebre Chikungunya/diagnóstico , Virus Chikungunya/aislamiento & purificación , Monitoreo Epidemiológico , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Filogenia , Análisis Espacio-Temporal , Secuenciación Completa del Genoma , Adulto JovenRESUMEN
The Northeast region of Brazil registered the second-highest incidence proportion of Chikungunya fever in 2019. In that year, an outbreak consisting of patients presenting with febrile disease associated with joint pain was reported by the public primary health care service in the city of Natal, in the state of Rio Grande do Norte, in March 2019. At first, the aetiological agent of the disease was undetermined. Since much is still unknown about chikungunya virus' (CHIKV) genomic diversity and evolutionary history in this northeasternmost state, we used a combination of portable whole-genome sequencing, molecular clock, and epidemiological analyses that revealed the reintroduction of the CHIKV East-Central-South-African (ECSA) lineage into Rio Grande do Norte. We estimated that the CHIKV ECSA lineage was first introduced into Rio Grande do Norte in early June 2014, while the 2019 outbreak clade diverged around April 2018, during a period of increased Chikungunya incidence in the Southeast region, which might have acted as a source of virus dispersion towards the Northeast region. Together, these results confirm that the ECSA lineage continues to spread across the country through interregional importation events, likely mediated by human mobility.
Asunto(s)
Fiebre Chikungunya/virología , Virus Chikungunya/genética , Brasil/epidemiología , Fiebre Chikungunya/epidemiología , Brotes de Enfermedades , Genotipo , Humanos , Filogenia , Secuenciación Completa del GenomaRESUMEN
Brazil experienced a large dengue virus (DENV) epidemic in 2019, highlighting a continuous struggle with effective control and public health preparedness. Using Oxford Nanopore sequencing, we led field and classroom initiatives for the monitoring of DENV in Brazil, generating 227 novel genome sequences of DENV1-2 from 85 municipalities (2015-2019). This equated to an over 50% increase in the number of DENV genomes from Brazil available in public databases. Using both phylogenetic and epidemiological models we retrospectively reconstructed the recent transmission history of DENV1-2. Phylogenetic analysis revealed complex patterns of transmission, with both lineage co-circulation and replacement. We identified two lineages within the DENV2 BR-4 clade, for which we estimated the effective reproduction number and pattern of seasonality. Overall, the surveillance outputs and training initiative described here serve as a proof-of-concept for the utility of real-time portable sequencing for research and local capacity building in the genomic surveillance of emerging viruses.
Asunto(s)
Virus del Dengue/genética , Dengue/epidemiología , Epidemias/prevención & control , Monitoreo Epidemiológico , Brasil/epidemiología , Dengue/prevención & control , Dengue/transmisión , Dengue/virología , Virus del Dengue/aislamiento & purificación , Estudios de Factibilidad , Variación Genética , Genoma Viral/genética , Humanos , Unidades Móviles de Salud , Epidemiología Molecular , Tipificación Molecular , Filogenia , Prueba de Estudio Conceptual , ARN Viral/genética , ARN Viral/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa , Estudios Retrospectivos , Secuenciación Completa del GenomaRESUMEN
The Chikungunya virus infection in Brazil has raised several concerns due to the rapid dissemination of the virus and its association with several clinical complications. Nevertheless, there is limited information about the genomic epidemiology of CHIKV circulating in Brazil from surveillance studies. Thus, to better understand its dispersion dynamics in Rio de Janeiro (RJ), one of the most affected states during the 2016-2019 epidemic waves, we generated 23 near-complete genomes of CHIKV isolates from two main cities located in the metropolitan mesoregion, obtained directly from clinical samples. Our phylogenetic reconstructions suggest the 2019-CHIKV-ECSA epidemic in RJ state was characterized by the co-circulation of multiple clade (clade A and B), highlighting that two independent introduction events of CHIKV-ECSA into RJ state have occurred between 2016-2019, both mediated from the northeastern region. Interestingly, we identified that the two-clade displaying eighteen characteristic amino acids changes among structural and non-structural proteins. Our findings reinforce that genomic data can provide information about virus genetic diversity and transmission dynamics, which might assist in the arbovirus epidemics establishing of an effective surveillance framework.
RESUMEN
BACKGROUND: Yellow fever (YF) is a severe, infectious, but non-communicable arboviral hemorrhagic disease. In the last decades, yellow fever virus (YFV) infections have been prevalent in endemic areas in Brazil, affecting human and non-human primate (NHP) populations. Monitoring of NHP infection started in 1999, and reports of epizootic diseases are considered important indicators of viral transmission, particularly in relation to the sylvatic cycle. This study presents the monitoring of YFV by real-time RT-PCR and the epidemiological findings related to the deaths of NHPs in the south-eastern states and in the north-eastern state of Bahia, during the outbreak of YF in Brazil during 2017 and 2018. METHODS: A total of 4198 samples from 2099 NHPs from south-eastern and north-eastern Brazilian states were analyzed by real-time reverse transcription polymerase chain reaction (rtRT-PCR). RESULTS: A total of 4198 samples from 2099 NHPs from south-eastern and north-eastern Brazilian states were collected between 2017 and 2018. The samples were subjected to molecular diagnostics for YFV detection using real-time reverse transcription polymerase chain reaction (rtRT-PCR) techniques. Epizootics were coincident with human YF cases. Furthermore, our results showed that the YF frequency was higher among marmosets (Callithrix sp.) than in previous reports. Viremia in species of the genus Alouatta and Callithrix differed greatly. DISCUSSION: Our results indicate a need for further investigation of the role of Callithrix spp. in the transmission cycles of YFV in Brazil. In particular, YFV transmission was observed in a region where viral circulation has not been recorded for decades and thus vaccination has not been previously recommended. CONCLUSIONS: This highlights the need to straighten epizootic surveillance and evaluate the extent of vaccination programmes in Brazil in previously considered "YFV-free" areas of the country.
Asunto(s)
Enfermedades de los Primates/epidemiología , Fiebre Amarilla/veterinaria , Alouatta/virología , Animales , Brasil/epidemiología , Callithrix/virología , Brotes de Enfermedades , Humanos , Enfermedades de los Primates/transmisión , Enfermedades de los Primates/virología , Fiebre Amarilla/epidemiología , Fiebre Amarilla/virología , Zoonosis/epidemiología , Zoonosis/virologíaRESUMEN
The recent emergence of a coronavirus (SARS-CoV-2), first identified in the Chinese city of Wuhan in December 2019, has had major public health and economic consequences. Although 61,888 confirmed cases were reported in Brazil by 28 April 2020, little is known about the SARS-CoV-2 epidemic in this country. To better understand the recent epidemic in the second most populous state in southeast Brazil - Minas Gerais (MG) - we sequenced 40 complete SARS-CoV-2 genomes from MG cases and examined epidemiological data from three Brazilian states. Both the genome analyses and the geographical distribution of reported cases indicate for multiple independent introductions into MG. Epidemiological estimates of the reproductive number (R) using different data sources and theoretical assumptions suggest the potential for sustained virus transmission despite a reduction in R from the first reported case to the end of April 2020. The estimated date of SARS-CoV-2 introduction into Brazil was consistent with epidemiological data from the first case of a returned traveller from Lombardy, Italy. These findings highlight the nature of the COVID-19 epidemic in MG and reinforce the need for real-time and continued genomic surveillance strategies to better understand and prepare for the epidemic spread of emerging viral pathogens..
Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Genoma Viral , Neumonía Viral/epidemiología , Neumonía Viral/transmisión , Adulto , Anciano , Brasil/epidemiología , COVID-19 , Femenino , Geografía , Humanos , Masculino , Persona de Mediana Edad , Pandemias , SARS-CoV-2 , Secuenciación Completa del Genoma , Adulto JovenRESUMEN
Yellow fever virus (YFV) causes a clinical syndrome of acute hemorrhagic hepatitis. YFV transmission involves non-human primates (NHP), mosquitoes and humans. By late 2016, Brazil experienced the largest YFV outbreak of the last 100 years, with 2050 human confirmed cases, with 681 cases ending in death and 764 confirmed epizootic cases in NHP. Among affected areas, Bahia state in Northeastern was the only region with no autochthonous human cases. By using next generation sequence approach, we investigated the molecular epidemiology of YFV in NHP in Bahia and discuss what factors might have prevented human cases. We investigated 47 YFV positive tissue samples from NHP cases to generate 8 novel YFV genomes. ML phylogenetic tree reconstructions and automated subtyping tools placed the newly generated genomes within the South American genotype I (SA I). Our analysis revealed that the YFV genomes from Bahia formed two distinct well-supported phylogenetic clusters that emerged most likely of an introduction from Minas Gerais and Espírito Santo states. Vegetation coverage analysis performed shows predominantly low to medium vegetation coverage in Bahia state. Together, our findings support the hypothesis of two independent YFV SA-I introductions. We also highlighted the effectiveness of the actions taken by epidemiological surveillance team of the state to prevented human cases.
Asunto(s)
Enfermedades de los Primates/virología , Fiebre Amarilla/veterinaria , Virus de la Fiebre Amarilla/genética , Alouatta , Animales , Brasil/epidemiología , Callithrix , Ecosistema , Genoma Viral , Humanos , Filogenia , Fiebre Amarilla/epidemiología , Fiebre Amarilla/prevención & control , Fiebre Amarilla/transmisión , Virus de la Fiebre Amarilla/clasificaciónRESUMEN
Zika virus (ZIKV) has caused an explosive epidemic linked to severe clinical outcomes in the Americas. As of June 2018, 4,929 ZIKV suspected infections and 46 congenital syndrome cases had been reported in Manaus, Amazonas, Brazil. Although Manaus is a key demographic hub in the Amazon region, little is known about the ZIKV epidemic there, in terms of both transmission and viral genetic diversity. Using portable virus genome sequencing, we generated 59 ZIKV genomes in Manaus. Phylogenetic analyses indicated multiple introductions of ZIKV from northeastern Brazil to Manaus. Spatial genomic analysis of virus movement among six areas in Manaus suggested that populous northern neighborhoods acted as sources of virus transmission to other neighborhoods. Our study revealed how the ZIKV epidemic was ignited and maintained within the largest urban metropolis in the Amazon. These results might contribute to improving the public health response to outbreaks in Brazil.
Asunto(s)
Infección por el Virus Zika/virología , Virus Zika/genética , Brasil/epidemiología , Monitoreo Epidemiológico , Femenino , Genómica/métodos , Humanos , Masculino , Infección por el Virus Zika/epidemiologíaRESUMEN
The emergence of chikungunya virus (CHIKV) has raised serious concerns due to the virus' rapid dissemination into new geographic areas and the clinical features associated with infection. To better understand CHIKV dynamics in Rio de Janeiro, we generated 11 near-complete genomes by means of real-time portable nanopore sequencing of virus isolates obtained directly from clinical samples. To better understand CHIKV dynamics in Rio de Janeiro, we generated 11 near-complete genomes by means of real-time portable nanopore sequencing of virus isolates obtained directly from clinical samples. Our phylogenetic reconstructions indicated the circulation of the East-Central-South-African (ECSA) lineage in Rio de Janeiro. Time-measured phylogenetic analysis combined with CHIKV notified case numbers revealed the ECSA lineage was introduced in Rio de Janeiro around June 2015 (95% Bayesian credible interval: May to July 2015) indicating the virus was circulating unnoticed for 5 months before the first reports of CHIKV autochthonous transmissions in Rio de Janeiro, in November 2015. These findings reinforce that continued genomic surveillance strategies are needed to assist in the monitoring and understanding of arbovirus epidemics, which might help to attenuate public health impact of infectious diseases.
Asunto(s)
Fiebre Chikungunya/genética , Virus Chikungunya/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Adulto , África/epidemiología , Brasil/epidemiología , Fiebre Chikungunya/epidemiología , Fiebre Chikungunya/transmisión , Femenino , Humanos , Masculino , Persona de Mediana EdadRESUMEN
The burden of arboviruses in the Americas is high and may result in long-term sequelae with infants disabled by Zika virus infection (ZIKV) and arthritis caused by infection with Chikungunya virus (CHIKV). We aimed to identify environmental drivers of arbovirus epidemics to predict where the next epidemics will occur and prioritize municipalities for vector control and eventual vaccination. We screened sera and urine samples (n = 10,459) from residents of 48 municipalities in the state of Rio de Janeiro for CHIKV, dengue virus (DENV), and ZIKV by molecular PCR diagnostics. Further, we assessed the spatial pattern of arbovirus incidence at the municipal and neighborhood scales and the timing of epidemics and major rainfall events. Lab-confirmed cases included 1,717 infections with ZIKV (43.8%) and 2,170 with CHIKV (55.4%) and only 29 (<1%) with DENV. ZIKV incidence was greater in neighborhoods with little access to municipal water infrastructure (r = -0.47, p = 1.2x10-8). CHIKV incidence was weakly correlated with urbanization (r = 0.2, p = 0.02). Rains began in October 2015 and were followed one month later by the largest wave of ZIKV epidemic. ZIKV cases markedly declined in February 2016, which coincided with the start of a CHIKV outbreak. Rainfall predicted ZIKV and CHIKV with a lead time of 3 weeks each time. The association between rainfall and epidemics reflects vector ecology as the larval stages of Aedes aegypti require pools of water to develop. The temporal dynamics of ZIKV and CHIKV may be explained by the shorter incubation period of the viruses in the mosquito vector; 2 days for CHIKV versus 10 days for ZIKV.
Asunto(s)
Conducta , Fiebre Chikungunya/epidemiología , Clima , Infección por el Virus Zika/epidemiología , Adulto , Animales , Brasil/epidemiología , Virus Chikungunya/genética , Virus Chikungunya/aislamiento & purificación , Virus del Dengue/genética , Virus del Dengue/aislamiento & purificación , Brotes de Enfermedades , Femenino , Humanos , Incidencia , Masculino , Mosquitos Vectores , Embarazo , Lluvia , Factores de Riesgo , Adulto Joven , Virus Zika/genética , Virus Zika/aislamiento & purificaciónRESUMEN
BACKGROUND: The incidence of microcephaly in Brazil in 2015 was 20 times higher than in previous years. Congenital microcephaly is associated with genetic factors and several causative agents. Epidemiological data suggest that microcephaly cases in Brazil might be associated with the introduction of Zika virus. We aimed to detect and sequence the Zika virus genome in amniotic fluid samples of two pregnant women in Brazil whose fetuses were diagnosed with microcephaly. METHODS: In this case study, amniotic fluid samples from two pregnant women from the state of Paraíba in Brazil whose fetuses had been diagnosed with microcephaly were obtained, on the recommendation of the Brazilian health authorities, by ultrasound-guided transabdominal amniocentesis at 28 weeks' gestation. The women had presented at 18 weeks' and 10 weeks' gestation, respectively, with clinical manifestations that could have been symptoms of Zika virus infection, including fever, myalgia, and rash. After the amniotic fluid samples were centrifuged, DNA and RNA were extracted from the purified virus particles before the viral genome was identified by quantitative reverse transcription PCR and viral metagenomic next-generation sequencing. Phylogenetic reconstruction and investigation of recombination events were done by comparing the Brazilian Zika virus genome with sequences from other Zika strains and from flaviviruses that occur in similar regions in Brazil. FINDINGS: We detected the Zika virus genome in the amniotic fluid of both pregnant women. The virus was not detected in their urine or serum. Tests for dengue virus, chikungunya virus, Toxoplasma gondii, rubella virus, cytomegalovirus, herpes simplex virus, HIV, Treponema pallidum, and parvovirus B19 were all negative. After sequencing of the complete genome of the Brazilian Zika virus isolated from patient 1, phylogenetic analyses showed that the virus shares 97-100% of its genomic identity with lineages isolated during an outbreak in French Polynesia in 2013, and that in both envelope and NS5 genomic regions, it clustered with sequences from North and South America, southeast Asia, and the Pacific. After assessing the possibility of recombination events between the Zika virus and other flaviviruses, we ruled out the hypothesis that the Brazilian Zika virus genome is a recombinant strain with other mosquito-borne flaviviruses. INTERPRETATION: These findings strengthen the putative association between Zika virus and cases of microcephaly in neonates in Brazil. Moreover, our results suggest that the virus can cross the placental barrier. As a result, Zika virus should be considered as a potential infectious agent for human fetuses. Pathogenesis studies that confirm the tropism of Zika virus for neuronal cells are warranted. FUNDING: Consellho Nacional de Desenvolvimento e Pesquisa (CNPq), Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ).