Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nature ; 574(7778): 404-408, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31578527

RESUMEN

Over the past two decades efforts to control malaria have halved the number of cases globally, yet burdens remain high in much of Africa and the elimination of malaria has not been achieved even in areas where extreme reductions have been sustained, such as South Africa1,2. Studies seeking to understand the paradoxical persistence of malaria in areas in which surface water is absent for 3-8 months of the year have suggested that some species of Anopheles mosquito use long-distance migration3. Here we confirm this hypothesis through aerial sampling of mosquitoes at 40-290 m above ground level and provide-to our knowledge-the first evidence of windborne migration of African malaria vectors, and consequently of the pathogens that they transmit. Ten species, including the primary malaria vector Anopheles coluzzii, were identified among 235 anopheline mosquitoes that were captured during 617 nocturnal aerial collections in the Sahel of Mali. Notably, females accounted for more than 80% of all of the mosquitoes that we collected. Of these, 90% had taken a blood meal before their migration, which implies that pathogens are probably transported over long distances by migrating females. The likelihood of capturing Anopheles species increased with altitude (the height of the sampling panel above ground level) and during the wet seasons, but variation between years and localities was minimal. Simulated trajectories of mosquito flights indicated that there would be mean nightly displacements of up to 300 km for 9-h flight durations. Annually, the estimated numbers of mosquitoes at altitude that cross a 100-km line perpendicular to the prevailing wind direction included 81,000 Anopheles gambiae sensu stricto, 6 million A. coluzzii and 44 million Anopheles squamosus. These results provide compelling evidence that millions of malaria vectors that have previously fed on blood frequently migrate over hundreds of kilometres, and thus almost certainly spread malaria over these distances. The successful elimination of malaria may therefore depend on whether the sources of migrant vectors can be identified and controlled.


Asunto(s)
Migración Animal/fisiología , Culicidae/fisiología , Malaria/transmisión , Mosquitos Vectores/fisiología , Viento , África , Animales , Culicidae/parasitología , Femenino , Mosquitos Vectores/parasitología
2.
Malar J ; 19(1): 263, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32698842

RESUMEN

BACKGROUND: In the West African Sahel, mosquito reproduction is halted during the 5-7 month-long dry season, due to the absence of surface waters required for larval development. However, recent studies have suggested that both Anopheles gambiae sensu stricto (s.s.) and Anopheles arabiensis repopulate this region via migration from distant locations where larval sites are perennial. Anopheles coluzzii engages in more regional migration, presumably within the Sahel, following shifting resources correlating with the ever-changing patterns of Sahelian rainfall. Understanding mosquito migration is key to controlling malaria-a disease that continues to claim more than 400,000 lives annually, especially those of African children. Using tethered flight data of wild mosquitoes, the distribution of flight parameters were evaluated as indicators of long-range migrants versus appetitive flyers, and the species specific seasonal differences and gonotrophic states compared between two flight activity modalities. Morphometrical differences were evaluated in the wings of mosquitoes exhibiting high flight activity (HFA) vs. low flight activity (LFA). METHODS: A novel tethered-flight assay was used to characterize flight in the three primary malaria vectors- An. arabiensis, An. coluzzii and An. gambiae s.s. The flights of tethered wild mosquitoes were audio-recorded from 21:00 h to 05:00 h in the following morning and three flight aptitude indices were examined: total flight duration, longest flight bout, and the number of flight bouts during the assay. RESULTS: The distributions of all flight indices were strongly skewed to the right, indicating that the population consisted of a majority of low-flight activity (LFA) mosquitoes and a minority of high-flight activity (HFA) mosquitoes. The median total flight was 586 s and the maximum value was 16,110 s (~ 4.5 h). In accordance with recent results, flight aptitude peaked in the wet season, and was higher in gravid females than in non-blood-fed females. Flight aptitude was also found to be higher in An. coluzzii compared to An. arabiensis, with intermediate values in An. gambiae s.s., but displaying no statistical difference. Evaluating differences in wing size and shape between LFA individuals and HFA ones, the wing size of HFA An. coluzzii was larger than that of LFAs during the wet season-its length was wider than predicted by allometry alone, indicating a change in wing shape. No statistically significant differences were found in the wing size/shape of An. gambiae s.s. or An. arabiensis. CONCLUSIONS: The partial agreement between the tethered flight results and recent results based on aerial sampling of these species suggest a degree of discrimination between appetitive flyers and long-distance migrants although identifying HFAs as long-distance migrants is not recommended without further investigation.


Asunto(s)
Migración Animal , Anopheles/fisiología , Vuelo Animal , Malaria/transmisión , Mosquitos Vectores/fisiología , Animales , Variación Biológica Individual , Estaciones del Año , Especificidad de la Especie
3.
medRxiv ; 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37398491

RESUMEN

The spread of SARS-CoV-2 cannot be well monitored and understood in areas without capacity for effective disease surveillance. Countries with a young population will have disproportionately large numbers of asymptomatic or pauci-symptomatic infections, further hindering detection of infection in the population. Sero-surveillance on a country-wide scale by trained medical professionals may be limited in scope in resource limited setting such as Mali. Novel ways of broadly sampling the human population in a non-invasive method would allow for large-scale surveillance at a reduced cost. Here we evaluate the collection of naturally bloodfed mosquitoes to test for human anti-SARS-CoV-2 antibodies in the laboratory and at five field locations in Mali. Immunoglobulin-G antibodies were found to be readily detectable within the mosquito bloodmeals by a bead-based immunoassay at least through 10 hours post-feeding with high sensitivity (0.900 ± 0.059) and specificity (0.924 ± 0.080), respectively, indicating that most blood-fed mosquitoes collected indoors during early morning hours (and thus, have likely fed the previous night) are viable samples for analysis. We find that reactivity to four SARS-CoV-2 antigens rose during the pandemic from pre-pandemic levels. Consistent with other sero-surveillance studies in Mali, crude seropositivity of blood sampled via mosquitoes was 6.3% in October/November 2020 over all sites, and increased to 25.1% overall, with the town closest to Bamako reaching 46.7% in February of 2021. Mosquito bloodmeals a viable target for conventional immunoassays, and therefore country-wide sero-surveillance of human diseases (both vector-borne and non-vector-borne) is attainable in areas where human-biting mosquitoes are common, and is an informative, cost-effective, non-invasive sampling option.

4.
Front Epidemiol ; 3: 1243691, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38455906

RESUMEN

Background: The spread of SARS-CoV-2 cannot be well monitored and understood in areas without capacity for effective disease surveillance. Countries with a young population will have disproportionately large numbers of asymptomatic or pauci-symptomatic infections, further hindering detection of infection. Sero-surveillance on a country-wide scale by trained medical professionals may be limited in a resource-limited setting such as Mali. Novel ways of broadly sampling the human population in a non-invasive method would allow for large-scale surveillance at a reduced cost. Approach: Here we evaluate the collection of naturally blood-fed mosquitoes to test for human anti-SARS-CoV-2 antibodies in the laboratory and at five field locations in Mali. Results: Immunoglobulin-G antibodies to multiple SARS-CoV-2 antigens were readily detected in mosquito bloodmeals by bead-based immunoassay through at least 10 h after feeding [mean sensitivity of 0.92 (95% CI 0.78-1) and mean specificity of 0.98 (95% CI 0.88-1)], indicating that most blood-fed mosquitoes collected indoors during early morning hours (and likely to have fed the previous night) are viable samples for analysis. We found that reactivity to four SARS-CoV-2 antigens rose during the pandemic from pre-pandemic levels. The crude seropositivity of blood sampled via mosquitoes was 6.3% in October and November 2020 across all sites, and increased to 25.1% overall by February 2021, with the most urban site reaching 46.7%, consistent with independent venous blood-based sero-surveillance estimates. Conclusions: We have demonstrated that using mosquito bloodmeals, country-wide sero-surveillance of human diseases (both vector-borne and non-vector-borne) is possible in areas where human-biting mosquitoes are common, offering an informative, cost-effective, and non-invasive sampling option.

5.
Nat Ecol Evol ; 6(11): 1687-1699, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36216903

RESUMEN

Data suggest that the malaria vector mosquito Anopheles coluzzii persists during the dry season in the Sahel through a dormancy mechanism known as aestivation; however, the contribution of aestivation compared with alternative strategies such as migration is unknown. Here we marked larval Anopheles mosquitoes in two Sahelian villages in Mali using deuterium (2H) to assess the contribution of aestivation to persistence of mosquitoes through the seven-month dry season. After an initial enrichment period, 33% of An. coluzzii mosquitoes were strongly marked. Seven months following enrichment, multiple analysis methods supported the ongoing presence of marked mosquitoes, compatible with the prediction that the fraction of marked mosquitoes should remain stable throughout the dry season if local aestivation is occurring. The results suggest that aestivation is a major persistence mechanism of An. coluzzii in the Sahel, contributing at least 20% of the adults at the onset of rains. This persistence strategy could influence mosquito control and malaria elimination campaigns.


Asunto(s)
Anopheles , Malaria , Animales , Estivación , Estaciones del Año , Mosquitos Vectores
6.
Front Epidemiol ; 2: 1001782, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38455321

RESUMEN

Recent studies have reported Anopheles mosquitoes captured at high-altitude (40-290 m above ground) in the Sahel. Here, we describe this migration modality across genera and species of African Culicidae and examine its implications for disease transmission and control. As well as Anopheles, six other genera-Culex, Aedes, Mansonia, Mimomyia, Lutzia, and Eretmapodites comprised 90% of the 2,340 mosquitoes captured at altitude. Of the 50 molecularly confirmed species (N = 2,107), 33 species represented by multiple specimens were conservatively considered high-altitude windborne migrants, suggesting it is a common migration modality in mosquitoes (31-47% of the known species in Mali), and especially in Culex (45-59%). Overall species abundance varied between 2 and 710 specimens/species (in Ae. vittatus and Cx. perexiguus, respectively). At altitude, females outnumbered males 6:1, and 93% of the females have taken at least one blood meal on a vertebrate host prior to their departure. Most taxa were more common at higher sampling altitudes, indicating that total abundance and diversity are underestimated. High-altitude flight activity was concentrated between June and November coinciding with availability of surface waters and peak disease transmission by mosquitoes. These hallmarks of windborne mosquito migration bolster their role as carriers of mosquito-borne pathogens (MBPs). Screening 921 mosquitoes using pan-Plasmodium assays revealed that thoracic infection rate in these high-altitude migrants was 2.4%, providing a proof of concept that vertebrate pathogens are transported by windborne mosquitoes at altitude. Fourteen of the 33 windborne mosquito species had been reported as vectors to 25 MBPs in West Africa, which represent 32% of the MBPs known in that region and include those that inflict the heaviest burden on human and animal health, such as malaria, yellow fever, dengue, and Rift Valley fever. We highlight five arboviruses that are most likely affected by windborne mosquitoes in West Africa: Rift Valley fever, O'nyong'nyong, Ngari, Pangola, and Ndumu. We conclude that the study of windborne spread of diseases by migrating insects and the development of surveillance to map the sources, routes, and destinations of vectors and pathogens is key to understand, predict, and mitigate existing and new threats of public health.

7.
J Med Entomol ; 58(1): 343-349, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-32667040

RESUMEN

Recent results of high-altitude windborne mosquito migration raised questions about the viability of these mosquitoes despite ample evidence that many insect species, including other dipterans, have been known to migrate regularly over tens or hundreds of kilometers on high-altitude winds and retain their viability. To address these concerns, we subjected wild Anopheles gambiae s.l. Giles mosquitoes to a high-altitude survival assay, followed by oviposition (egg laying) and blood feeding assays. Despite carrying out the survival assay under exceptionally harsh conditions that probably provide the lowest survival potential following high altitude flight, a high proportion of the mosquitoes survived for 6- and even 11-h assay durations at 120- to 250-m altitudes. Minimal differences in egg laying success were noted between mosquitoes exposed to high altitude survival assay and those kept near the ground. Similarly, minimal differences were found in the female's ability to take an additional bloodmeal after oviposition between these groups. We conclude that similar to other high-altitude migrating insects, mosquitoes are able to withstand extended high-altitude flight and subsequently reproduce and transmit pathogens by blood feeding on new hosts.


Asunto(s)
Migración Animal , Anopheles/fisiología , Conducta Alimentaria , Mosquitos Vectores/fisiología , Oviposición , Sobrevida , Altitud , Animales , Femenino , Malaria , Malí , Viento
8.
Methods Ecol Evol ; 12(6): 1008-1016, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34249305

RESUMEN

Current mark-release-recapture methodologies are limited in their ability to address complex problems in vector biology, such as studying multiple groups overlapping in space and time. Additionally, limited mark retention, reduced post-marking survival and the large effort in marking, collection and recapture all complicate effective insect tracking.We have developed and evaluated a marking method using a fluorescent dye (SmartWater®) combined with synthetic DNA tags to informatively and efficiently mark adult mosquitoes using an airbrush pump and nebulizer. Using a handheld UV flashlight, the fluorescent marking enabled quick and simple initial detection of recaptures in a field-ready and non-destructive approach that when combined with an extraction-free PCR on individual mosquito legs provides potentially unlimited marking information.This marking, first tested in the laboratory with Anopheles gambiae s.l. mosquitoes, did not affect survival (median ages 24-28 days, p-adj > 0.25), oviposition (median eggs/female of 28.8, 32.5, 33.3 for water, green, red dyes, respectively, p-adj > 0.44) or Plasmodium competence (mean oocysts 5.56-10.6, p-adj > 0.95). DNA and fluorescence had 100% retention up to 3 weeks (longest time point tested) with high intensity, indicating marks would persist longer.We describe a novel, simple, no/low-impact and long-lasting marking method that allows separation of multiple insect subpopulations by combining unlimited length and sequence variation in the synthetic DNA tags. This method can be readily deployed in the field for marking multiple groups of mosquitoes or other insects.

9.
Parasit Vectors ; 13(1): 412, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32787948

RESUMEN

BACKGROUND: How anopheline mosquitoes persist through the long dry season in Africa remains a gap in our understanding of these malaria vectors. To span this period in locations such as the Sahelian zone of Mali, mosquitoes must either migrate to areas of permanent water, recolonize areas as they again become favorable, or survive in harsh conditions including high temperatures, low humidity, and an absence of surface water (required for breeding). Adult mosquitoes surviving through this season must dramatically extend their typical lifespan (averaging 2-3 weeks) to 7 months. Previous work has found evidence that the malaria mosquito An. coluzzii, survives over 200 days in the wild between rainy seasons in a presumed state of aestivation (hibernation), but this state has so far not been replicated in laboratory conditions. The inability to recapitulate aestivation in the lab hinders addressing key questions such as how this state is induced, how it affects malaria vector competence, and its impact on disease transmission. METHODS: In effort to induce aestivation, we held laboratory mosquitoes in climate-controlled incubators with a range of conditions that adjusted humidity (40-85% RH), temperature (18-27 °C), and light conditions (8-12 h of light) and evaluated their survivorship. These conditions were chosen to mimic the late rainy and dry seasons as well as relevant extremes these mosquitoes may experience during aestivation. RESULTS: We found that by priming mosquitoes in conditions simulating the late wet season in Mali, and maintaining mosquitoes in reduced light/temperature, mean mosquito survival increased from 18.34 ± 0.65 to 48.02 ± 2.87 days, median survival increased from 19 (95% CI 17-21) to 50 days (95% CI 40-58), and the maximum longevity increased from 38 to 109 days (P-adj < 0.001). While this increase falls short of the 200 + day survival seen in field mosquitoes, this extension is substantially higher than previously found through environmental or dietary modulation and is hard to reconcile with states other than aestivation. This finding will provide a platform for future characterization of this state, and allow for comparison to field collected samples.


Asunto(s)
Anopheles/fisiología , Estivación/fisiología , África/epidemiología , Animales , Humedad , Laboratorios , Longevidad , Malaria/transmisión , Modelos Animales , Mosquitos Vectores/fisiología , Estaciones del Año , Análisis de Supervivencia , Temperatura
10.
Sci Rep ; 10(1): 20523, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33239619

RESUMEN

Long-distance migration of insects impacts food security, public health, and conservation-issues that are especially significant in Africa. Windborne migration is a key strategy enabling exploitation of ephemeral havens such as the Sahel, however, its knowledge remains sparse. In this first cross-season investigation (3 years) of the aerial fauna over Africa, we sampled insects flying 40-290 m above ground in Mali, using nets mounted on tethered helium-filled balloons. Nearly half a million insects were caught, representing at least 100 families from thirteen orders. Control nets confirmed that the insects were captured at altitude. Thirteen ecologically and phylogenetically diverse species were studied in detail. Migration of all species peaked during the wet season every year across localities, suggesting regular migrations. Species differed in flight altitude, seasonality, and associated weather conditions. All taxa exhibited frequent flights on southerly winds, accounting for the recolonization of the Sahel from southern source populations. "Return" southward movement occurred in most taxa. Estimates of the seasonal number of migrants per species crossing Mali at latitude 14°N were in the trillions, and the nightly distances traversed reached hundreds of kilometers. The magnitude and diversity of windborne insect migration highlight its importance and impacts on Sahelian and neighboring ecosystems.


Asunto(s)
Altitud , Migración Animal/fisiología , Biodiversidad , Insectos/fisiología , Animales , Vuelo Animal/fisiología , Geografía , Malí , Filogenia , Estaciones del Año , Especificidad de la Especie
11.
Methods Ecol Evol ; 10(8): 1274-1285, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32855783

RESUMEN

BACKGROUND: 1.Tracking mosquitoes using current methods of mark-release-recapture are limited to small spatial and temporal scales exposing major gaps in understanding long-range movements and extended survival. Novel approaches to track mosquitoes may yield fresh insights into their biology which improves intervention activities to reduce disease transmission.Stable isotope enrichment of natural mosquito breeding sites allows large-scale marking of wild mosquitoes absent human handling. Mosquito larvae that develop in 2H-enriched water are expected to be detectable for over four months using tissue mass-fraction 2H measurements, providing opportunities for long-term mark-capture studies on a large scale. APPROACH: 2.A laboratory study followed by a field experiment of mosquito larval habitat 2H-enrichment was conducted in Mali, to evaluate potential labeling of wild mosquitoes. Twelve natural larval sites were enriched using [2H]-Deuterium-oxide (D2O, 99%). Enrichment level was maintained by supplementation following dilution by rains. Availability of 2H to mosquito larvae was enhanced by locally collected and cultured microorganisms (i.e. protozoa, algae and bacteria) reared in deuterated water, and provided as larval diet. Putative natural predators were removed from the larval sites and first instar larvae Anopheles gambiae s.l. larvae were added every other day. Emergence traps enabled collection of eclosing adults. Adult mosquitoes were kept at laboratory conditions for analysis of label attrition with age. RESULTS: 3.Deuterium enrichment of wild mosquitoes above background levels (maximum = 143.1 ppm) became apparent 5-6 days after initial exposure, after which 2H values increased steadily until ~24 days later (to a mean of approx. 220 ppm). Anopheles and Culex mosquitoes showed significantly different 2H values (211 and 194.2 ppm respectively). Both genera exhibited exponential label attrition (e (-x)) amounting to 21.6% by day 30 post emergence, after which attrition rate continuously decreased. Males of both taxa exhibited a higher mean 2H value compared to females. CONCLUSIONS: 4.Deuterium-oxide proved useful in marking mosquitoes in their natural larval sites and although costly, may prove valuable for studies of mosquitoes and other aquatic insects. Based on our field study, we provide a protocol for marking mosquito larval sites using deuterium-oxide.

12.
Parasit Vectors ; 10(1): 156, 2017 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-28340627

RESUMEN

BACKGROUND: Variation in longevity has long been of interest in vector biology because of its implication in disease transmission through vectorial capacity. Recent studies suggest that Anopheles coluzzii adults persist during the ~7 month dry season via aestivation. Recently there has been a growing body of evidence linking dietary restriction and low ratio of dietary protein to carbohydrate with extended longevity of animals. Here, we evaluated the effects of dietary restriction and the protein : carbohydrate ratio on longevity of An. coluzzii. RESULTS: In our experiment, we combined dietary regimes with temperature and relative humidity to assess their effects on An. coluzzii longevity, in an attempt to simulate aestivation under laboratory conditions. Our results showed significant effects of both the physical and the dietary variables on longevity, but that diet regimen had a considerably greater effect than those of the physical conditions. Higher temperature and lower humidity reduced longevity. At 22 °C dietary protein (blood) shortened longevity when sugar was not restricted (RH = 85%), but extended longevity when sugar was restricted (RH = 50%). CONCLUSIONS: Dietary restriction extended longevity in accord with predictions, but protein : carbohydrate ratio had a negligible effect. We identified conditions that significantly extend longevity in malaria vectors, however, the extent of increase in longevity was insufficient to simulate aestivation.


Asunto(s)
Anopheles/fisiología , Métodos de Alimentación , Longevidad , Mosquitos Vectores , Alimentación Animal , Animales , Carbohidratos/administración & dosificación , Dieta/métodos , Proteínas/administración & dosificación
13.
Acta Trop ; 126(3): 205-10, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23499863

RESUMEN

Female phlebotomine sand flies (Diptera: Psychodidae) transmit leishmaniasis as they engorge on vertebrate blood required for egg production. Phlebotomus (Phlebotomus) papatasi (Scopoli, 1786), the vector of Leishmania major (Yakimoff & Schokhor, 1914), the causative agent of cutaneous leishmaniasis (CL) were not attracted to large horizontal sticky traps (LHSTs) unless these were baited with CO2 derived from dry ice or from fermenting sugar/yeast mixture (SYM). Attraction of P. papatasi males by CO2 may indicate their tendency to mate on or near the blood-host. Male P. (Larroussius) orientalis (Parrot, 1936), the vector of visceral leishmaniasis (VL) in Ethiopia, were collected on LHSTs in large numbers. Although the number of females remained low, augmentation with SYM, increased the number of females by 800% while the number of males increased by only about 40%. Apparently, male P. orientalis utilize the horizontal surfaces for forming mating swarms. P. (Paraphlebotomus) sergenti (Parrot, 1917), is the vector of CL caused by Leishmania tropica. Although approximately twice as many P. sergenti males were caught on LHSTs as females, it appears that LHSTs were attractive to both sexes. Use of SYM baits is potentially useful for monitoring phlebotomine sand flies in places where dry ice is unobtainable or prohibitively expensive. LHSTs can provide an inexpensive alternative to CDC traps for monitoring some species of sand flies. Unfortunately, the numbers of female sand flies, crucial for estimating transmission of Leishmania, is usually low on LHSTs.


Asunto(s)
Feromonas/farmacología , Phlebotomus/fisiología , Animales , Conducta Animal/efectos de los fármacos , Carbohidratos/farmacología , Dióxido de Carbono/farmacología , Femenino , Masculino
14.
Parasit Vectors ; 6(1): 341, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24305038

RESUMEN

BACKGROUND: Visceral leishmaniasis (VL) known as Kala-Azar is a serious systemic disease caused by Leishmania donovani parasites (Trypanosomatidae: Kinetoplastida). The disease is prevalent in the Indian Sub-continent, East Africa and Brazil. In Africa, the worst affected regions are in Sudan, with an estimated 15,000-20,000 cases annually and Ethiopia with 5,000-7,000 cases a year. The main vector of VL in Sudan and Northern Ethiopia is Phlebotomus orientalis, a sand fly frequently found in association with Acacia spp and Balanite spp woodlands. METHODS: To optimize sampling of sand flies for epidemiological studies in remote areas we tested different means of attraction. Miniature suction traps employing 2AA batteries (3 V) were deployed in the up-draft orientation and baited with chemical light-sticks (Red, Yellow and Green), or bakers' yeast in sugar solution (emitting CO2 and perhaps other attractants). These traps were compared with standard CDC incandescent light traps employing 6 V batteries. Trials were conducted during two consecutive years at different localities around Sheraro, a town in West Tigray, Northern Ethiopia. RESULTS: The sand fly species composition was similar but not identical in the different locations tested with different Sergentomyia spp. predominating. Phlebotomus spp. comprised less than 1% of the catches during the first year trials (November - December 2011) but increased markedly during the second year trials performed later in the dry season at the height of the sand fly season in February 2012. Although there did not appear to be a species bias towards different light wave-lengths, fermenting yeast in sugar solution attracted relatively more Phlebotomus spp. and Sergentomyia schwetzi. CONCLUSIONS: Although the standard 6 V CDC incandescent light traps captured more sand flies, light-weight (~350 g) 3 V suction traps baited with chemical light-sticks were shown to be effective means of monitoring sand flies. Such traps operated without light and baited with yeast in sugar solution caught relatively more Phlebotomus spp.


Asunto(s)
Carbohidratos , Entomología/métodos , Luz , Phlebotomus/fisiología , Psychodidae/fisiología , Levaduras , Animales , Etiopía , Femenino , Masculino , Phlebotomus/efectos de los fármacos , Phlebotomus/efectos de la radiación , Psychodidae/efectos de los fármacos , Psychodidae/efectos de la radiación
15.
PLoS Negl Trop Dis ; 7(2): e2058, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23437408

RESUMEN

In 2006/7, 18 cases of cutaneous leishmaniasis (CL) were reported for the first time from Sde Eliyahu (pop. 650), a village in the Beit She'an valley of Israel. Between 2007-2011, a further 88 CL cases were diagnosed bringing the total to 106 (16.3% of the population of Sde Eliyahu). The majority of cases resided in the south-western part of the village along the perimeter fence. The causative parasite was identified as Leishmania major Yakimoff & Schokhor, 1914 (Kinetoplastida: Trypanosomatidae). Phlebotomus papatasi (Scopoli), 1786 (Diptera: Psychodidae) was found to be the most abundant phlebotomine species comprising 97% of the sand flies trapped inside the village, and an average of 7.9% of the females were positive for Leishmania ITS1 DNA. Parasite isolates from CL cases and a sand fly were characterized using several methods and shown to be L. major. During a comprehensive survey of rodents 164 Levant voles Microtus guentheri Danford & Alston, 1880 (Rodentia: Cricetidae) were captured in alfalfa fields bordering the village. Of these 27 (16.5%) tested positive for Leishmania ITS1 DNA and shown to be L. major by reverse line blotting. A very high percentage (58.3%-21/36) of Tristram's jirds Meriones tristrami Thomas, 1892 (Rodentia: Muridae), found further away from the village also tested positive for ITS1 by PCR. Isolates of L. major were successfully cultured from the ear of a wild jird found positive by ITS1 PCR. Although none of the wild PCR-positive voles exhibited external pathology, laboratory-reared voles that were infected by intradermal L. major inoculation, developed patent lesions and sand flies became infected by feeding on the ears of these laboratory-infected voles. This is the first report implicating M. guentheri and M. tristrami as reservoirs of Leishmania. The widespread co-distribution of M. guentheri and P. papatasi, suggests a significant threat from the spread of CL caused by L. major in the Middle East, central Asia and southern Europe.


Asunto(s)
Arvicolinae/parasitología , Reservorios de Enfermedades , Gerbillinae/parasitología , Leishmania major/aislamiento & purificación , Leishmaniasis Cutánea/epidemiología , Animales , ADN Protozoario/genética , ADN Protozoario/aislamiento & purificación , ADN Espaciador Ribosómico/genética , ADN Espaciador Ribosómico/aislamiento & purificación , Femenino , Humanos , Israel/epidemiología , Leishmania major/genética , Leishmaniasis Cutánea/parasitología , Phlebotomus/parasitología
16.
PLoS Negl Trop Dis ; 6(7): e1725, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22802981

RESUMEN

Phlebotomine sand flies transmit Leishmania, phlebo-viruses and Bartonella to humans. A prominent gap in our knowledge of sand fly biology remains the ecology of their immature stages. Sand flies, unlike mosquitoes do not breed in water and only small numbers of larvae have been recovered from diverse habitats that provide stable temperatures, high humidity and decaying organic matter. We describe studies designed to identify and characterize sand fly breeding habitats in a Judean Desert focus of cutaneous leishmaniasis. To detect breeding habitats we constructed emergence traps comprising sand fly-proof netting covering defined areas or cave openings. Large size horizontal sticky traps within the confined spaces were used to trap the sand flies. Newly eclosed male sand flies were identified based on their un-rotated genitalia. Cumulative results show that Phlebotomus sergenti the vector of Leishmania tropica rests and breeds inside caves that are also home to rock hyraxes (the reservoir hosts of L. tropica) and several rodent species. Emerging sand flies were also trapped outside covered caves, probably arriving from other caves or from smaller, concealed cracks in the rocky ledges close by. Man-made support walls constructed with large boulders were also identified as breeding habitats for Ph. sergenti albeit less important than caves. Soil samples obtained from caves and burrows were rich in organic matter and salt content. In this study we developed and put into practice a generalized experimental scheme for identifying sand fly breeding habitats and for assessing the quantities of flies that emerge from them. An improved understanding of sand fly larval ecology should facilitate the implementation of effective control strategies of sand fly vectors of Leishmania.


Asunto(s)
Cuevas , Vectores de Enfermedades , Ecosistema , Phlebotomus/fisiología , Animales , Cruzamiento , Clima Desértico , Femenino , Damanes/crecimiento & desarrollo , Israel , Leishmania tropica/parasitología , Leishmaniasis Cutánea/transmisión , Masculino , Phlebotomus/crecimiento & desarrollo , Phlebotomus/parasitología
17.
J Vector Ecol ; 36 Suppl 1: S10-6, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21366761

RESUMEN

The control of the sand fly vectors of leishmaniasis is problematic because their larvae develop in largely unknown terrestrial habitats making them impervious to available control measures. Furthermore, the behavior patterns of adults of different sand fly species are highly diverse, requiring tailor-made control solutions based upon a profound knowledge of their biology. In this short review, we describe possible lines of research that hold promise for improving our munitions in the battle against the diseases they transmit. The suggested approaches are not necessarily presented in order of importance, but rather in a logical sequence starting in the larval breeding areas where the sand flies originate and culminating with the human environments. Some examples are offered to illustrate the potential efficacy.


Asunto(s)
Control de Insectos/métodos , Phlebotomus/crecimiento & desarrollo , Animales , Humanos , Insectos Vectores/efectos de los fármacos , Insectos Vectores/crecimiento & desarrollo , Insectos Vectores/parasitología , Insecticidas/farmacología , Leishmaniasis/prevención & control , Leishmaniasis/transmisión , Mosquiteros , Phlebotomus/efectos de los fármacos , Phlebotomus/parasitología
18.
J Vector Ecol ; 36(2): 421-5, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22129414

RESUMEN

A number of mosquito species avoid predator-inhabited oviposition sites by detecting predator-released kairomones. In the laboratory, we found that when offered de-ionized water and de-ionized water conditioned with Notonecta maculata, gravid Anopheles gambiae females preferentially oviposited into the former. We then conducted further experiments using two chemical components found in Notonecta-conditioned water, chemically pure n-tricosane and/or n-heneicosane, that was previously shown to repel oviposition by Culiseta longiareolata. These hydrocarbons failed to deter oviposition by An. gambiae females. Thus, different mosquito species may rely on distinct chemical cues to avoid predators. Identification and chemical characterization of such kairomones could facilitate innovative, environmentally sound mosquito control.


Asunto(s)
Anopheles/fisiología , Conducta Animal , Heterópteros/fisiología , Oviposición/fisiología , Feromonas/química , Alcanos , Animales , Señales (Psicología) , Culicidae/fisiología , Ecosistema , Femenino , Conducta Predatoria
19.
J Vector Ecol ; 34(1): 114-8, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20836811

RESUMEN

The efficacy of three suction traps for trapping phlebotomine sand flies (Diptera: Psychodidae) was compared. Traps were baited with Co(2) and used without any light source. CO(2)-baited CDC traps were evaluated either in their standard downdraft orientation or inverted (iCDC traps). Mosquito Magnet-X (MMX) counterflow geometry traps were tested in the updraft orientation only. Both updraft traps (iCDC and MMX) were deployed with their opening ∼10 cm from the ground while the opening of the downdraft (CDC) trap was ∼40 cm above ground. Comparisons were conducted in two arid locations where different sand fly species prevail. In the Jordan Valley, 3,367 sand flies were caught, 2,370 of which were females. The predominant species was Phlebotomus (Phlebotomus) papatasi, Scopoli 1786 (>99%). The updraft-type traps iCDC and MMX caught an average of 118 and 67.1 sand flies per trap night, respectively. The CDC trap caught 32.9 sand flies on average per night, significantly less than the iCDC traps. In the Judean desert, traps were arranged in a 3 × 3 Latin square design. A total of 565 sand flies were caught, 345 of which were females. The predominant species was P. (Paraphlebotomus) sergenti Parrot 1917 (87%). The updraft traps iCDC and MMX caught an average of 25.6 and 17.9 sand flies per trap per night, respectively. The CDC trap caught 7.8 sand flies on average per night, significantly less than the iCDC traps. The female to male ratio was 1.7 on average for all trap types. In conclusion, updraft traps deployed with their opening close to the ground are clearly more effective for trapping sand flies than downdraft CDC traps in open habitats.


Asunto(s)
Ecosistema , Control de Insectos/instrumentación , Psychodidae , Animales , Femenino , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA