Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cardiovasc Magn Reson ; 26(1): 101006, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38309581

RESUMEN

BACKGROUND: Four-dimensional (4D) flow magnetic resonance imaging (MRI) often relies on the injection of gadolinium- or iron-oxide-based contrast agents to improve vessel delineation. In this work, a novel technique is developed to acquire and reconstruct 4D flow data with excellent dynamic visualization of blood vessels but without the need for contrast injection. Synchronization of Neighboring Acquisitions by Physiological Signals (SyNAPS) uses pilot tone (PT) navigation to retrospectively synchronize the reconstruction of two free-running three-dimensional radial acquisitions, to create co-registered anatomy and flow images. METHODS: Thirteen volunteers and two Marfan syndrome patients were scanned without contrast agent using one free-running fast interrupted steady-state (FISS) sequence and one free-running phase-contrast MRI (PC-MRI) sequence. PT signals spanning the two sequences were recorded for retrospective respiratory motion correction and cardiac binning. The magnitude and phase images reconstructed, respectively, from FISS and PC-MRI, were synchronized to create SyNAPS 4D flow datasets. Conventional two-dimensional (2D) flow data were acquired for reference in ascending (AAo) and descending aorta (DAo). The blood-to-myocardium contrast ratio, dynamic vessel area, net volume, and peak flow were used to compare SyNAPS 4D flow with Native 4D flow (without FISS information) and 2D flow. A score of 0-4 was given to each dataset by two blinded experts regarding the feasibility of performing vessel delineation. RESULTS: Blood-to-myocardium contrast ratio for SyNAPS 4D flow magnitude images (1.5 ± 0.3) was significantly higher than for Native 4D flow (0.7 ± 0.1, p < 0.01) and was comparable to 2D flow (2.3 ± 0.9, p = 0.02). Image quality scores of SyNAPS 4D flow from the experts (M.P.: 1.9 ± 0.3, E.T.: 2.5 ± 0.5) were overall significantly higher than the scores from Native 4D flow (M.P.: 1.6 ± 0.6, p = 0.03, E.T.: 0.8 ± 0.4, p < 0.01) but still significantly lower than the scores from the reference 2D flow datasets (M.P.: 2.8 ± 0.4, p < 0.01, E.T.: 3.5 ± 0.7, p < 0.01). The Pearson correlation coefficient between the dynamic vessel area measured on SyNAPS 4D flow and that from 2D flow was 0.69 ± 0.24 for the AAo and 0.83 ± 0.10 for the DAo, whereas the Pearson correlation between Native 4D flow and 2D flow measurements was 0.12 ± 0.48 for the AAo and 0.08 ± 0.39 for the DAo. Linear correlations between SyNAPS 4D flow and 2D flow measurements of net volume (r2 = 0.83) and peak flow (r2 = 0.87) were larger than the correlations between Native 4D flow and 2D flow measurements of net volume (r2 = 0.79) and peak flow (r2 = 0.76). CONCLUSION: The feasibility and utility of SyNAPS were demonstrated for joint whole-heart anatomical and flow MRI without requiring electrocardiography gating, respiratory navigators, or contrast agents. Using SyNAPS, a high-contrast anatomical imaging sequence can be used to improve 4D flow measurements that often suffer from poor delineation of vessel boundaries in the absence of contrast agents.


Asunto(s)
Interpretación de Imagen Asistida por Computador , Síndrome de Marfan , Valor Predictivo de las Pruebas , Flujo Sanguíneo Regional , Humanos , Velocidad del Flujo Sanguíneo , Adulto , Masculino , Síndrome de Marfan/fisiopatología , Femenino , Adulto Joven , Estudios de Casos y Controles , Angiografía por Resonancia Magnética , Reproducibilidad de los Resultados , Estudios de Factibilidad , Hemodinámica , Imagen de Perfusión/métodos , Medios de Contraste/administración & dosificación , Factores de Tiempo , Persona de Mediana Edad
2.
Magn Reson Med ; 90(1): 117-132, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36877140

RESUMEN

PURPOSE: To validate a respiratory motion correction method called focused navigation (fNAV) for free-running radial whole-heart 4D flow MRI. METHODS: Using fNAV, respiratory signals derived from radial readouts are converted into three orthogonal displacements, which are then used to correct respiratory motion in 4D flow datasets. Hundred 4D flow acquisitions were simulated with non-rigid respiratory motion and used for validation. The difference between generated and fNAV displacement coefficients was calculated. Vessel area and flow measurements from 4D flow reconstructions with (fNAV) and without (uncorrected) motion correction were compared to the motion-free ground-truth. In 25 patients, the same measurements were compared between fNAV 4D flow, 2D flow, navigator-gated Cartesian 4D flow, and uncorrected 4D flow datasets. RESULTS: For simulated data, the average difference between generated and fNAV displacement coefficients was 0.04 ± $$ \pm $$ 0.32 mm and 0.31 ± $$ \pm $$ 0.35 mm in the x and y directions, respectively. In the z direction, this difference was region-dependent (0.02 ± $$ \pm $$ 0.51 mm up to 5.85 ± $$ \pm $$ 3.41 mm). For all measurements (vessel area, net volume, and peak flow), the average difference from ground truth was higher for uncorrected 4D flow datasets (0.32 ± $$ \pm $$ 0.11 cm2 , 11.1 ± $$ \pm $$ 3.5 mL, and 22.3 ± $$ \pm $$ 6.0 mL/s) than for fNAV 4D flow datasets (0.10 ± $$ \pm $$ 0.03 cm2 , 2.6 ± $$ \pm $$ 0.7 mL, and 5.1 ± 0 $$ \pm 0 $$ .9 mL/s, p < 0.05). In vivo, average vessel area measurements were 4.92 ± $$ \pm $$ 2.95 cm2 , 5.06 ± $$ \pm $$ 2.64 cm2 , 4.87 ± $$ \pm $$ 2.57 cm2 , 4.87 ± $$ \pm $$ 2.69 cm2 , for 2D flow and fNAV, navigator-gated and uncorrected 4D flow datasets, respectively. In the ascending aorta, all 4D flow datasets except for the fNAV reconstruction had significantly different vessel area measurements from 2D flow. Overall, 2D flow datasets demonstrated the strongest correlation to fNAV 4D flow for both net volume (r2  = 0.92) and peak flow (r2  = 0.94), followed by navigator-gated 4D flow (r2  = 0.83 and r2  = 0.86, respectively), and uncorrected 4D flow (r2  = 0.69 and r2  = 0.86, respectively). CONCLUSION: fNAV corrected respiratory motion in vitro and in vivo, resulting in fNAV 4D flow measurements that are comparable to those derived from 2D flow and navigator-gated Cartesian 4D flow datasets, with improvements over those from uncorrected 4D flow.


Asunto(s)
Imagen por Resonancia Magnética , Frecuencia Respiratoria , Humanos , Imagen por Resonancia Magnética/métodos , Movimiento (Física) , Aorta , Imagenología Tridimensional/métodos
3.
Magn Reson Med ; 90(3): 922-938, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37103471

RESUMEN

PURPOSE: To develop a free-running 3D radial whole-heart multiecho gradient echo (ME-GRE) framework for cardiac- and respiratory-motion-resolved fat fraction (FF) quantification. METHODS: (NTE = 8) readouts optimized for water-fat separation and quantification were integrated within a continuous non-electrocardiogram-triggered free-breathing 3D radial GRE acquisition. Motion resolution was achieved with pilot tone (PT) navigation, and the extracted cardiac and respiratory signals were compared to those obtained with self-gating (SG). After extra-dimensional golden-angle radial sparse parallel-based image reconstruction, FF, R2 *, and B0 maps, as well as fat and water images were generated with a maximum-likelihood fitting algorithm. The framework was tested in a fat-water phantom and in 10 healthy volunteers at 1.5 T using NTE = 4 and NTE = 8 echoes. The separated images and maps were compared with a standard free-breathing electrocardiogram (ECG)-triggered acquisition. RESULTS: The method was validated in vivo, and physiological motion was resolved over all collected echoes. Across volunteers, PT provided respiratory and cardiac signals in agreement (r = 0.91 and r = 0.72) with SG of the first echo, and a higher correlation to the ECG (0.1% of missed triggers for PT vs. 5.9% for SG). The framework enabled pericardial fat imaging and quantification throughout the cardiac cycle, revealing a decrease in FF at end-systole by 11.4% ± 3.1% across volunteers (p < 0.0001). Motion-resolved end-diastolic 3D FF maps showed good correlation with ECG-triggered measurements (FF bias of -1.06%). A significant difference in free-running FF measured with NTE = 4 and NTE = 8 was found (p < 0.0001 in sub-cutaneous fat and p < 0.01 in pericardial fat). CONCLUSION: Free-running fat fraction mapping was validated at 1.5 T, enabling ME-GRE-based fat quantification with NTE = 8 echoes in 6:15 min.


Asunto(s)
Corazón , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Corazón/diagnóstico por imagen , Electrocardiografía , Procesamiento de Imagen Asistido por Computador/métodos , Respiración , Imagenología Tridimensional/métodos
4.
Magn Reson Med ; 87(2): 718-732, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34611923

RESUMEN

PURPOSE: In this work, we integrated the pilot tone (PT) navigation system into a reconstruction framework for respiratory and cardiac motion-resolved 5D flow. We tested the hypotheses that PT would provide equivalent respiratory curves, cardiac triggers, and corresponding flow measurements to a previously established self-gating (SG) technique while being independent from changes to the acquisition parameters. METHODS: Fifteen volunteers and 9 patients were scanned with a free-running 5D flow sequence, with PT integrated. Respiratory curves and cardiac triggers from PT and SG were compared across all subjects. Flow measurements from 5D flow reconstructions using both PT and SG were compared to each other and to a reference electrocardiogram-gated and respiratory triggered 4D flow acquisition. Radial trajectories with variable readouts per interleave were also tested in 1 subject to compare cardiac trigger quality between PT and SG. RESULTS: The correlation between PT and SG respiratory curves were 0.95 ± 0.06 for volunteers and 0.95 ± 0.04 for patients. Heartbeat duration measurements in volunteers and patients showed a bias to electrocardiogram measurements of, respectively, 0.16 ± 64.94 ms and 0.01 ± 39.29 ms for PT versus electrocardiogram and of 0.24 ± 63.68 ms and 0.09 ± 32.79 ms for SG versus electrocardiogram. No significant differences were reported for the flow measurements between 5D flow PT and from 5D flow SG. A decrease in the cardiac triggering quality of SG was observed for increasing readouts per interleave, whereas PT quality remained constant. CONCLUSION: PT has been successfully integrated in 5D flow MRI and has shown equivalent results to the previously described 5D flow SG technique, while being completely acquisition-independent.


Asunto(s)
Corazón , Imagen por Resonancia Magnética , Electrocardiografía , Corazón/diagnóstico por imagen , Humanos , Movimiento (Física) , Respiración , Frecuencia Respiratoria
5.
J Cardiovasc Dev Dis ; 9(11)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36421934

RESUMEN

The 2019 Global Burden of Disease (GBD) study estimated that there were approximately 24.2 million people affected worldwide by degenerative mitral regurgitation (MR), resulting in 34,200 deaths. After aortic stenosis, MR is the most prevalent VHD in Europe and the second-most common VHD to pose indications for surgery in western countries. Current ESC and AHA/ACC guidelines for the management of VHD emphasize the importance of an integrative approach for the assessment of MR severity, which is of paramount importance in dictating the timing for surgery. Transthoracic echocardiography (TTE) and transesophageal echocardiography (TEE) are the first-line imaging modalities; however, despite the technological advancement, sometimes, the final diagnosis on the degree of the disease may still be challenging. In the last 20 years, CMR has emerged as a robust technique in the assessment of patients with cardiac disease, and, recently, its role is gaining more and more importance in the field of VHD. In fact, CMR is the gold standard in the assessment of cardiac volumes, and it is possible to accurately evaluate the regurgitant volume. The purpose of this review is to outline the current state-of-the-art management of MR by using Cardiac Magnetic Resonance (CMR).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA