Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 200: 110773, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32464445

RESUMEN

The present study aims to develop a practical approach for the optimal permeable reactive barrier (PRB) design towards Cr(VI) removal from groundwater. Batch and column experiments were performed to investigate the characteristics of the four proposed reactive materials; nanoscale zero-valent iron (Fe0), bimetallic nanoscale zero-valent iron (Fe0/Cu), activated carbon (AC) and sand/zeolite mixture (S/Z). Kinetic analysis and dynamic modeling of the experimental data were implemented to determine the controlling conditions of the reactive performance of the PRB's materials. The sensitivity index of the design parameters was examined as an indicator of their effect on the reactive responses. Moreover, the Response Surface Methodology (RSM) was considered for optimizing the design variables of the PRB based on the practical factorial analysis. Results revealed that Fe0 and Fe0/Cu showed high performance in Cr(VI) removal, with a slight superiority to Fe0, with final removal efficiency values of 89.7 and 84.1%, respectively. Kinetic analysis depicted that pseudo second order was the best fitting model for Cr(VI) removal in the four materials' cases. ANOVA statistical analysis revealed that quadratic polynomial model was the best model, corresponding to the highest correlation efficiency and adequate precision, to describe the relationships in the four PRB's cases between the selected dependent variables; resident time (tR), reactive material mass per sectional area of contaminant plume (M/A) and reactive material cost (CostPRB) towards the independent parameters; barrier thickness (b) and permeability (Kr). Additionally, sensitivity analysis has been conducted which depicted the high sensitivity, in the four PRB's cases, of average pore water velocity within the barrier (vr) vr and Kr with the highest and the second-highest sensitivity index (SI) values towards tR, respectively. The RSM-optimization revealed that Fe0 is the most feasible reactive material, comparing to the other considered materials, with respect to the optimal conditions regarding the long residency (tR = 22 days) and low cost (b = 0.521 m), with around 95.2% desirability of its optimal solution. Overall, the current study represents a significant contribution and a vital step towards an accurate PRB's design based on previously determined optimal conditions.


Asunto(s)
Cromo/análisis , Restauración y Remediación Ambiental/métodos , Agua Subterránea/química , Hierro/química , Nanoestructuras/química , Contaminantes Químicos del Agua/análisis , Adsorción , Carbón Orgánico/química , Cinética , Modelos Teóricos , Permeabilidad , Propiedades de Superficie
2.
J Colloid Interface Sci ; 605: 813-827, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34371426

RESUMEN

The rapid evolution of antimicrobial resistant genes (AMRs) in water resources is well correlated to the persistent occurrence of ciprofloxacin in water. For the first time, encapsulated nanoscale zerovalent iron (nZVI) with a shell of magnesium hydroxide (Mg/Fe0) was used to adsorb ciprofloxacin from water. Optimization of the removal conditions exhibited that 5% was the optimum mass ratio between magnesium hydroxide and nZVI [Mg(OH)2/nZVI)] as more than 96% of 100 mg L-1 of ciprofloxacin was removed. In addition, 0.5 g L-1 of Mg/Fe0 showed an extraordinary performance in removing ciprofloxacin over a wide range of pH (3-11) with removal efficiencies exceeded 90%. Kinetic analysis displayed that the kinetic data was well described by both Pseudo first-order and second-order models. Also, the equilibrium data was well fitted by Freundlich isotherm model. In addition, thermodynamic analysis evidenced that the removal of ciprofloxacin by Mg/Fe0 was exothermic, and spontaneous. The experiments also revealed that physisorption and chemisorption were the responsible mechanisms for ciprofloxacin removal. The proposed treatment system remediated 10 litters of 100 mg L-1 of ciprofloxacin solution with 100% overall removal efficiency. This treatment system could be a promising and practical solution to decrease ciprofloxacin concentration in different water bodies.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Ciprofloxacina , Hierro , Cinética , Hidróxido de Magnesio , Agua , Contaminantes Químicos del Agua/análisis
3.
Chemosphere ; 287(Pt 1): 131990, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34454218

RESUMEN

The aim of the present study is developing a magnetic nanoscale zero-valent iron/zeolite (nZVI/Z) composite towards the efficient removal of ammonia-nitrogen (NH4+-N) from aqueous solutions. Series of batch experiments were conducted to investigate the effect of different factors on the removal efficiency, including pH effect, aerobic/anaerobic, NH4+-N initial concentration, and temperature. The mixing mass ratio of nZVI/Z was optimized to reach the optimal ratio (0.25 g nZVI: 0.75 g zeolite), corresponding to the best removal efficiency of 85.7% after 120 min of reaction. Results revealed that nZVI/Z is efficient for NH4+-N removal from water at a wide pH range (3.0-10.0), with superiority to the neutral conditions. Moreover, aerobic ambient and normal temperature of 25 °C were the optimal conditions for the removal process of NH4+-N. Removal mechanisms involved electrostatic attraction, ion exchange, and adsorption. Generally, nZVI/Z has great potential towards the practical applications of NH4+-N removal from water.


Asunto(s)
Contaminantes Químicos del Agua , Zeolitas , Adsorción , Amoníaco , Hierro , Nitrógeno , Contaminantes Químicos del Agua/análisis
4.
J Colloid Interface Sci ; 571: 66-79, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32182498

RESUMEN

Radioactive cesium was resealed to the environment as a result of many nuclear incidents. An effective treatment system is urgently needed to safely handle radioactive cesium-contaminated waters. Based on nanoscale zerovalent iron (nZVI) and zeolite, nine adsorbents were synthesized and applied to remove cesium from aqueous solutions. Magnetic zeolite composite (Ze/Fe0) was selected as the ideal adsorbent for treating cesium contaminated waters in a lab-scale continuous treatment system (LSCTS). The optimization process of the (Ze/Fe0) composite revealed that 1:1 is the optimum mass ratio between zeolite and nZVI. Furthermore, the optimization process proved that the initial pH and temperature have no significant effect on the adsorption of cesium by (Ze/Fe0) composite and the optimum dosage of (Ze/Fe0) composite is 5 g L-1. XRD and SEM results showed that the (Ze/Fe0) composite has an irregular shape with a poor crystalline structure. Kinetic and equilibrium data were best described by pseudo second order and Freundlich isotherm models. Seawater and groundwater experiments illustrated that the removal of cesium by (Ze/Fe0) composite was inhibited due to the existence of competing cations. Eight cycles of LSCTS were performed to examine the performance of (Ze/Fe0) composite in treating continuous streams of cesium contaminated waters. In all cycles except the cycle of treating contaminated seawater, LSCTS succeed to treat continuous flows of 1 mg L-1 cesium contaminated water with 100% overall removal efficiency. For treating contaminated seawater, pre-treatment unit is required to reduce the salinity of the contaminated seawater before staring the treatment process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA