Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Mol Endocrinol ; 69(1): 269-283, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35388795

RESUMEN

We previously identified a novel pathway of testosterone action via the androgen receptor (AR) in bone marrow mesenchymal precursor cells (BM-PCs) to negatively regulate fat mass and improve metabolic function in male mice. This was achieved using our PC-AR Gene Replacement mouse model in which the AR is only expressed in BM-PCs and deleted in all other tissues. We hypothesise that the markedly reduced fat mass and increased insulin sensitivity of PC-AR Gene Replacements will confer protection from diet-induced overweight and obesity. To test this, 6-week-old male PC-AR Gene Replacements and controls (WT, global-AR knockouts (KOs)) were fed a chow or high-caloric diet (HCD) for 8 or 18 weeks. Following 8 weeks (short-term) of HCD, WT and Global-ARKOs had markedly increased subcutaneous white adipose tissue (WAT) and retroperitoneal visceral adipose tissue (VAT) mass compared to chow-fed controls. In contrast, PC-AR Gene Replacements were resistant to WAT and VAT accumulation following short-term HCD feeding accompanied by fewer large adipocytes and upregulation of expression of the metabolic genes Acaca and Pnlpa2. Following long-term HCD feeding for 18 weeks, the PC-AR Gene Replacements were no longer resistant to increased WAT and VAT adiposity, however, maintained their improved whole-body insulin sensitivity with an increased rate of glucose disappearance and increased glucose uptake into subcutaneous WAT. In conclusion, the action of testosterone via the AR in BM-PCs to negatively regulate fat mass and improve metabolism confers resistance from short-term diet-induced weight gain and partial protection from long-term diet-induced obesity in male mice.


Asunto(s)
Resistencia a la Insulina , Animales , Médula Ósea/metabolismo , Dieta Alta en Grasa/efectos adversos , Resistencia a la Insulina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Sobrepeso , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Células Madre/metabolismo , Testosterona , Aumento de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA