Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Exp Physiol ; 103(4): 461-472, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29327381

RESUMEN

NEW FINDINGS: What is the central question of this study? Does oxidative stress induce impairment of autophagy that results in myocyte hypertrophy early after pressure overload? What is the main finding and its importance? In cultured myocytes, hydrogen peroxide decreased autophagy and increased hypertrophy, and inhibition of autophagy enhanced myocyte hypertrophy. In rats with early myocardial hypertrophy after pressure overload, myocyte autophagy was progressively decreased. The antioxidant N-acetyl-cysteine or the superoxide dismutase mimic tempol prevented the decrease of myocyte autophagy and attenuated myocyte hypertrophy early after pressure overload. These findings suggest that oxidative stress impairs myocyte autophagy that results in myocyte hypertrophy. ABSTRACT: Insufficient or excessive myocyte autophagy is associated with left ventricular (LV) hypertrophy. Reactive oxygen species mediate myocyte hypertrophy in vitro and pressure overload-induced LV hypertrophy in vivo. In the present study, we tested the hypothesis that oxidative stress induces an impairment of autophagy that results in myocyte hypertrophy. H9C2 cardiomyocytes pretreated with the autophagy inhibitor 3-methyladenine were exposed to 10 and 50 µm hydrogen peroxide (H2 O2 ) for 48 h. Male Sprague-Dawley rats underwent abdominal aortic constriction (AAC) or sham operation. The animals were killed 24, 48 or 72 h after surgery. In a separate group, the AAC and sham-operated rats randomly received the antioxidant N-acetyl-cysteine or the superoxide dismutase mimic tempol for 72 h. In H9C2 cardiomyocytes, H2 O2 decreased the ratio of microtubule-associated protein light chain 3 (LC3) II to LC3 I and increased P62 and phosphorylated ERK (p-ERK) proteins and myocyte surface area. 3-Methyladenine further increased H2 O2 -induced p-ERK expression. In rats after AAC, the heart to body weight ratio was progressively increased, the LC3 II/I ratio was progressively decreased, p62 and p-ERK expression was increased, and expression of Beclin1, Atg5 and Atg12 was decreased. N-Acetyl-cysteine or tempol prevented the decreases in the LC3 II/I ratio and Beclin1 and Atg5 expression and attenuated the increases in LV wall thickness, myocyte diameter and brain natriuretic peptide expression in AAC rats. In conclusion, oxidative stress decreases Beclin1 and Atg5 expression that results in impairment of autophagy, leading to myocyte hypertrophy. These findings suggest that antioxidants or restoration of autophagy might be of value in the prevention of early myocardial hypertrophy after pressure overload.


Asunto(s)
Autofagia/fisiología , Hipertrofia Ventricular Izquierda/patología , Células Musculares/patología , Estrés Oxidativo/fisiología , Animales , Antioxidantes/metabolismo , Proteína 5 Relacionada con la Autofagia/metabolismo , Beclina-1/metabolismo , Línea Celular , Hipertrofia Ventricular Izquierda/metabolismo , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Células Musculares/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fosforilación/fisiología , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
2.
Cell Physiol Biochem ; 44(6): 2439-2454, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29268264

RESUMEN

BACKGROUND/AIMS: The alterations in myocyte autophagy after myocardial infarction (MI) and the underlying mechanisms have not been fully understood. In this study, we investigated the temporal changes of myocyte autophagy in the remote non-infarcted myocardium in rabbits after MI and the relationships between alterations of myocyte autophagy and left ventricular (LV) remodeling and myocardial oxidative stress. METHODS: Rabbits were assigned to MI or sham operation. Rabbits with MI or sham were randomly assigned to receive chloroquine, an autophagy inhibitor, antioxidant vitamins C and E or placebo for 4 weeks. H9C2 cardiomyocytes were subjected to hypoxia or hydrogen peroxide (H2O2) treatment. RESULTS: MI rabbits exhibited progressive increases of LV end-diastolic dimension (EDD), and decreases of LV fractional shortening (FS) and dP/dt over 8 weeks. Myocyte autophagy assessed by the scores of LC3 and Beclin1 expression was progressively decreased at 1, 4 and 8 weeks after MI. The ratio of LC3 II/I and Beclin1 and Atg5 proteins were also decreased at 4 weeks after MI. There was a negative correlation between autophagy and LV EDD and a positive correlation between autophagy and LV FS and dP/dt. The autophagy inhibitor chloroquine worsened LV remodeling after MI. Decreased myocyte autophagy was associated with increased myocardial 4-hydroxynonenal. Antioxidant vitamins C and E prevented the decrease in myocyte autophagy after MI. In cultured H9C2 cardiomyocytes, the LC3 II/I ratio was decreased at 4 and 8 h after exposure to hypoxia, and the change was associated with increased 8-hydroxy-2-deoxyguanosine. A low concentration of H2O2 decreased the LC3 II/I ratio. CONCLUSION: Progressive reduction in myocyte autophagy in the remote non-infarcted myocardium was associated with myocardial oxidative stress and LV remodeling after MI. Antioxidants prevented the reduction in myocyte autophagy after MI, suggesting that oxidative stress mediates reduction in myocyte autophagy that contributes to post-MI remodeling.


Asunto(s)
Autofagia , Ventrículos Cardíacos/patología , Infarto del Miocardio/patología , Miocitos Cardíacos/patología , Estrés Oxidativo , Remodelación Ventricular , Animales , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/fisiopatología , Masculino , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/metabolismo , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA