Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Opt Express ; 32(6): 9634-9643, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38571193

RESUMEN

Cylindrical vector beams (CVBs) exhibit great potential for multiplexing communication, owing to their mode orthogonality and compatibility with conventional wavelength multiplexing techniques. However, the practical application of CVB multiplexing communication faces challenges due to the lack of effective spatial polarization manipulation technologies for (de)multiplexing multi-dimensional physical dimensions of CVBs. Herein, we introduce a wavelength- and polarization-sensitive cascaded phase modulation strategy that utilizes multiple coaxial metasurfaces for multi-dimensional modulation of CVBs. By leveraging the spin-dependent phase modulation mechanism, these metasurfaces enable the independent transformation of the two orthogonal polarization components of CVB modes. Combined with the wavelength sensitivity of Fresnel diffraction in progressive phase modulation, this approach establishes a high-dimensional mapping relationship among CVB modes, wavelengths, spatial positions, and Gaussian fundamental modes, thereby facilitating multi-dimensional (de)multiplexing involving CVB modes and wavelengths. As a proof of concept, we theoretically demonstrate a 9-channel multi-dimensional multiplexing system, successfully achieving joint (de)multiplexing of 3 CVB modes (1, 2, and 3) and 3 wavelengths (1550 nm, 1560 nm, and 1570 nm) with a diffraction efficiency exceeding 80%. Additionally, we show the transmission of 16-QAM signals across 9 channels with the bit-error-rates below 10-5. By combining the integrability of metasurfaces with the high-dimensional wavefront manipulation capabilities of multilevel modulation, our strategy can effectively address the diverse demands of different wavelengths and CVB modes in optical communication.

2.
Opt Lett ; 49(21): 6121-6124, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39485426

RESUMEN

Cylindrical vector beams (CVBs), characterized by their spatially non-uniform but rotationally symmetric polarization distributions, have garnered considerable attention due to their unique properties. In this Letter, we demonstrate the generation of cylindrical vector beams directly from a Yb-doped Mamyshev oscillator (MO). Both the radially and azimuthally polarized vector beams are achieved with a pulse duration of 3.6 ps and a pulse energy of 8.2 nJ at the repetition rate of 15.25 MHz. We also find that the filtered linearly polarized beam from the output CVBs can be homogeneously dechirped to 114 fs using the external grating pairs, indicating the potential intracavity pulse compression capability for the output CVBs. Simultaneously, ultrafast scalar Gaussian beams can also be obtained from another arm. These results can give insights into the experimental design and realization of high-energy and high-power structured (CVB or vortex) ultrashort lasers.

3.
Opt Lett ; 49(10): 2533-2536, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748098

RESUMEN

Cylindrical vector beam (CVB) multiplexing communication demands effective mode cross-connection techniques to establish communication networks. While methods like polarized grating and coordinate transformation have been developed for (de)multiplexing CVB modes, challenges persist in the cross-connection of these multiplexed mode channels, including multi-mode conversion and inhomogeneous polarization control. Herein, we present an independent off-axis spin-orbit interaction strategy utilizing spin-decoupled metasurfaces. Cross-connection is achieved by encoding conjugated Dammann optical vortex grating phases onto the two orthogonal circularly polarized components of CVBs. Experimental results demonstrate the successful interconversion of four CVB modes (CVB+1 and CVB-2, CVB+2 and CVB-4) using a Si-based metasurface with a polarization conversion efficiency exceeding 85%. This facilitates the cross-connection of 200 Gbit/s quadrature phase-shift keying signals with bit-error-rates below 10-6. Offering advantages such as ultra-compact device size, flexible control of CVB modes, and multi-mode parallel processing, this approach shows promise in advancing the networking capabilities of CVB mode multiplexing communication networks.

4.
Opt Lett ; 49(16): 4759-4762, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39146154

RESUMEN

Multi-dimensional orbital angular momentum (OAM) mode multiplexing provides a promising route for enlarging communication capacity and establishing comprehensive networks. While multi-dimensional multiplexing has gained advancements, the cross-connection of these multiplexed channels, especially involving modes and polarizations, remains challenging due to the needs for multi-mode interconversion and on-demand polarization control. Herein, we propose an OAM mode-polarization cross-transformation solution via cascaded partitioned phase modulation, which enables the divergently separated OAM modes to be independently phase-imposed within distinct spatial regions, leading to the synergistic conversion operation of mode and polarization channels. In demonstrations, we implemented the cross-connection of three OAM modes and two polarization multiplexed channels, achieving the mode purity that exceeds 0.951 and polarization contrast up to 0.947. The measured mode insertion losses and polarization conversion losses are below 3.42 and 3.54 dB, respectively. Consequently, 1.2 Tbit/s quadrature phase shift keying signals were successfully exchanged, yielding the bit-error-rates close to 10-6. Incorporating with increased partitioned phase treatments, this approach shows promise in accommodating massive mode-polarization multiplexed channels, which hold the potential to augment networking capability of large-scale OAM mode multiplexing communication networks.

5.
Nature ; 561(7721): 88-93, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30150772

RESUMEN

The rising demand for radiation detection materials in many applications has led to extensive research on scintillators1-3. The ability of a scintillator to absorb high-energy (kiloelectronvolt-scale) X-ray photons and convert the absorbed energy into low-energy visible photons is critical for applications in radiation exposure monitoring, security inspection, X-ray astronomy and medical radiography4,5. However, conventional scintillators are generally synthesized by crystallization at a high temperature and their radioluminescence is difficult to tune across the visible spectrum. Here we describe experimental investigations of a series of all-inorganic perovskite nanocrystals comprising caesium and lead atoms and their response to X-ray irradiation. These nanocrystal scintillators exhibit strong X-ray absorption and intense radioluminescence at visible wavelengths. Unlike bulk inorganic scintillators, these perovskite nanomaterials are solution-processable at a relatively low temperature and can generate X-ray-induced emissions that are easily tunable across the visible spectrum by tailoring the anionic component of colloidal precursors during their synthesis. These features allow the fabrication of flexible and highly sensitive X-ray detectors with a detection limit of 13 nanograys per second, which is about 400 times lower than typical medical imaging doses. We show that these colour-tunable perovskite nanocrystal scintillators can provide a convenient visualization tool for X-ray radiography, as the associated image can be directly recorded by standard digital cameras. We also demonstrate their direct integration with commercial flat-panel imagers and their utility in examining electronic circuit boards under low-dose X-ray illumination.

6.
Opt Express ; 31(4): 6296-6303, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36823889

RESUMEN

We report the dispersive wave (DW) emission from the Gaussian pulse with temporal sinusoidal phase (TSP) modulation. The TSP-induced chirp can enhance or cancel the chirp generated by self-phase modulation by properly selecting the modulation parameters of TSP, which can influence the nonlinear propagation of the TSP-modulated pulse. It is shown that the TSP can effectively control the resonant frequency and energy conversion efficiency of the DW emission. We give a modified phase-matching condition to predict the resonant frequencies, which agree with the simulation results obtained by numerically solving the nonlinear Schrödinger equation. The enhanced conversion efficiency of the DWs can be increased up to 28% with only TSP modulation. Our results can extend the application of temporal phase modulation technology for wavelength conversion, and broadband supercontinuum generation.

7.
Opt Express ; 31(17): 27858-27867, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37710852

RESUMEN

The pulsed 1.7 µm vortex beams (VBs) has significant research prospects in the fields of imaging and material processing. We experimentally demonstrate the generation of sub-200 fs pulsed VBs at 1.7 µm based on a home-made mode-selective coupler (MSC). Through dispersion management technology in a thulium-doped fiber laser, the stable linearly polarized VBs pulse directly emitting from the cavity is measured to be 186 fs with central wavelength of 1721.2 nm. By controlling the linear superposition of LP11 modes, cylindrical vector beams (CVBs) can also be obtained. In addition, a variety of bound states pulsed VBs at 1.7 µm can also be observed. Our finding provides an effective way to generate ultrashort pulsed VBs and CVBs at 1.7 µm waveband.

8.
Opt Express ; 31(6): 9961-9972, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-37157559

RESUMEN

We investigate the propagation dynamics of the soliton-sinc, a kind of novel hybrid pulse, in the presence of higher-order effects with emphasis on the third-order dispersion (TOD) and Raman effects. At variance with the fundamental sech soliton, the traits of the band-limited soliton-sinc pulse can effectively manipulate the radiation process of dispersive waves (DWs) induced by the TOD. The energy enhancement and the radiated frequency tunability strongly depend on the band-limited parameter. A modified phase-matching condition is proposed for predicting the resonant frequency of the DWs emitted by soliton-sinc pulses, which is verified by the numerically calculated results. In addition, Raman-induced frequency shift (RIFS) of the soliton sinc pulse increases exponentially with a decrease of the band-limited parameter. Finally, we further discuss the simultaneous contribution of the Raman and TOD effects to the generation of the DWs emitted from the soliton-sinc pulses. The Raman effect can then either reduce or amplify the radiated DWs depending on the sign of the TOD. These results show that soliton-sinc optical pulses should be relevant for practical applications such as broadband supercontinuum spectra generation as well as nonlinear frequency conversion.

9.
Opt Express ; 31(26): 44353-44363, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38178508

RESUMEN

Orbital angular momentum (OAM) mode offers a promising modulation dimension for high-order shift-keying (SK) communication due to its mode orthogonality. However, the expansion of modulation order through superposing OAM modes is constrained by the mode-field mismatch resulting from the rapidly increased divergence with mode orders. Herein, we address this problem by propose a phase-difference modulation strategy that breaks the limitation of modulation orders via introducing a phase-difference degree of freedom (DoF) beyond OAM modes. Phase-difference modulation exploits the sensitivity of mode interference to phase differences, thereby providing distinct tunable parameters. This enables the generation of a series of codable spatial modes with continuous variation within the same superposed OAM modes by manipulating the interference state. Due to the inherent independence between OAM mode and phase-difference DoF, the number of codable modes increases exponentially, which facilitates establishing ultra-high-order phase shift-keying by discretizing the continuous phase difference and establishing a one-to-one mapping between coding symbols and constructed modes. We show that a phase shift-keying communication link with a modulation order of up to 4 × 104 is achieved by employing only 3 OAM modes (+1, + 2 and +3), and the decode accuracy reaches 99.9%. Since the modulation order is exponentially correlated with the OAM modes and phase differences, the order can be greatly improved by further increasing the superimposed OAM modes, which may provide new insight for high-order OAM-based SK communication.

10.
Opt Express ; 31(25): 42299-42309, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38087606

RESUMEN

Cylindrical vector beam (CVB) has recently gained attention as a promising carrier for signal multiplexing owing to its mode orthogonality. However, the full-duplex multiplexing communication has not been previously explored for the lack of effective technologies to parallelly couple and separate CVB modes. Herein, we present a full-duplex solution for CVB multiplexing communication that utilizes spin-dependent phase modulation metasurfaces. By independently phase-modulating the two spin eigenstates of CVBs with the metasurface via spin-dependent orbital interactions, and loading two binary Dammann vortex gratings, we enabled an independent and reciprocal wave vector manipulation of CVBs for full-duplex (de)multiplexing operation. To demonstrate this concept, we constructed a 16-channel (including 4 CVB modes and 4 wavelengths) full-duplex CVB multiplexing communication system and achieved the bidirectional transmission of 800 Gbit/s quadrature-phase shift-keying (QPSK) signals over a 5 km few-mode fiber. Our results demonstrate the successful multiplexing and demultiplexing of 2 radial CVB modes and 2 azimuthal CVB modes in full-duplex communication with the bit-error-rates approaching 1.87 × 10-5.

11.
Opt Lett ; 48(24): 6529-6532, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38099791

RESUMEN

We investigate the dispersive waves (DWs) emitted from shaped pulses with spectral Heaviside step phases (HSPs). The spectrally HSP-modulated pulse exhibits a unique double-peak structure, where the intensity and separation of the twin peaks are determined by the modulation depth and frequency detuning. By tailoring the parameters of the HSP suitably, we can control the DW emission with regard to resonant frequency and conversion efficiency. As the intensity ratio or relative separation of neighboring peaks is elaborately chosen, the DW emission can be effectively boosted, or a solitonic cage can be constructed for realizing temporal reflections and refractions associated with spectral broadening and multi-peak spectra of the output DWs. These findings offer a straightforward and efficient approach for controlling the DW emission, which is highly relevant to the advancement of supercontinuum generation and wavelength conversion technology.

12.
Inorg Chem ; 62(49): 19848-19855, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38032318

RESUMEN

Recently, low-dimensional copper(I)-based perovskite or derivatives have gained extensive attention in scintillator applications because of their environmental friendliness and good stabilities. However, the unsatisfactory scintillation performance and complex fabrication processes hindered their practical applications. Herein, efficient yellow emissive CsCu2I3 nanocrystals (NCs) were successfully prepared via a simple Mn2+-assisted hot-injection method. The added Mn2+ effectively induced the phase transformation from Cs3Cu2I5 to CsCu2I3, leading to the preparation of single-phase CsCu2I3 NCs with few defects and a high fluorescence performance. The as-prepared "optimal CsCu2I3 NCs" exhibited superior photoluminescence (PL) performance with a record-high PL quantum yield (PLQY) of 61.9%. The excellent fluorescence originated from the radiative recombination of strongly localized one-dimension (1D) self-trapped excitons (STEs), which was systematically investigated via the wavelength-dependent PL excitation, PL emission, and temperature-dependent PL spectra. These CsCu2I3 NCs also exhibited outstanding X-ray scintillation properties with a high light yield (32000 photons MeV-1) and an ultralow detection limit (80.2 nGyair s-1). Eventually, the CsCu2I3 NCs scintillator film achieved an ultrahigh (16.6 lp mm-1) spatial resolution in X-ray imaging. The CsCu2I3 NCs also exhibited good stabilities against X-ray irradiation, heat, and environmental storage, indicating their great application potential in flexible X-ray detection and imaging.

13.
Opt Express ; 30(6): 9137-9146, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35299349

RESUMEN

The vector nature of noise-like pulses (NLPs) in a figure-eight erbium-doped fiber laser based on the nonlinear amplifier loop mirror (NALM) configuration is experimentally investigated. After achieving the operation regime of NLPs, both the group velocity locked noise-like vector pulses (GVL-NLVPs) and the polarization locked noise-like vector pulses (PL-NLVPs) are observed in the cavity. By virtue of the dispersive Fourier transform (DFT) technique, their spectral evolution and the energy vibration are measured and analyzed in real time. We also obtain another state of noise-like vector pulses (NLVPs) with combined characteristics of GVL-NLVPs and PL-NLVPs. It is shown that the NLVPs are sensitive to the cavity birefringence. Our results would be beneficial to complement the understanding of vector dynamics of NLPs in ultrafast fiber lasers.

14.
Opt Express ; 30(15): 27482-27496, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-36236919

RESUMEN

Vortex beams carrying orbital angular momentum (OAM) modes show superior multiplexing abilities in enhancing communication capacity. However, the signal fading induced by turbulence noise severely degrades the communication performance and even leads to communication interruption. Herein, we propose a diversity gain strategy to mitigate signal fading in OAM multiplexing communication and investigate the gain combination and channel assignment to optimize the diversity efficiency and communication capacity. Endowing signals with distinct channel matrices and superposing them with designed channel weights, we perform the diversity gain with an optimal gain efficiency, and the signal fading is mitigated by equalizing the turbulence noise. For the tradeoff between turbulence noise tolerance and communication capacity, multiplexed channels are algorithm-free assigned for diversity and multiplexing according to bit-error-rate and outage probability. As a proof of concept, we demonstrate a 6-channel multiplexing communication, where 3 OAM modes are assigned for diversity gain and 24 Gbit/s QPSK-OFDM signals are transmitted. After diversity gain, the bit-error-rate decreases from 1.41 × 10-2 to 1.63 × 10-4 at -14 dBm, and the outage probability of 86.7% is almost completely suppressed.

15.
Opt Express ; 30(4): 5569-5584, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35209516

RESUMEN

Orbital angular momentum (OAM) mode multiplexing provides a new strategy for reconstructing multiple holograms, which is compatible with other physical dimensions involving wavelength and polarization to enlarge information capacity. Conventional OAM multiplexing holography usually relies on the independence of physical dimensions, and the deep holography involving spatial depth is always limited for the lack of spatiotemporal evolution modulation technologies. Herein, we introduce a depth-controllable imaging technology in OAM deep multiplexing holography via designing a prototype of five-layer optical diffractive neural network (ODNN). Since the optical propagation with dimensional-independent spatiotemporal evolution offers a unique linear modulation to light, it is possible to combine OAM modes with spatial depths to realize OAM deep multiplexing holography. Exploiting the multi-plane light conversion and in-situ optical propagation principles, we simultaneously modulate both the OAM mode and spatial depth of incident light via unitary transformation and linear modulations, where OAM modes are encoded independently for conversions among holograms. Results show that the ODNN realized light field conversion and evolution of five multiplexed OAM modes in deep multiplexing holography, where the mean square error and structural similarity index measure are 0.03 and 86%, respectively. Our demonstration explores a depth-controllable spatiotemporal evolution technology in OAM deep multiplexing holography, which is expected to promote the development of OAM mode-based optical holography and storage.

16.
Opt Lett ; 47(21): 5680-5683, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37219302

RESUMEN

In this Letter, we present an analytical and numerical investigation to characterize the formation of quadratic doubly periodic waves originating from coherent modulation instability in a dispersive quadratic medium in the regime of cascading second-harmonic generation. To the best of our knowledge, such an endeavor has not been undertaken before, despite the growing relevance of doubly periodic solutions as the precursor of highly localized wave structures. Unlike the case with cubic nonlinearity, the periodicity of quadratic nonlinear waves can also be controlled by the wave-vector mismatch in addition to the initial input condition. Our results may impact widely on the formation, excitation, and control of extreme rogue waves and the description of modulation instability in a quadratic optical medium.

17.
Opt Lett ; 47(7): 1798-1801, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35363738

RESUMEN

Some rules of the diffractive deep neural network (D2NN) are discovered. They reveal that the inner product of any two optical fields in D2NN is invariant and the D2NN acts as a unitary transformation for optical fields. If the output intensities of the two inputs are separated spatially, the input fields must be orthogonal. These rules imply that the D2NN is not only suitable for the classification of general objects but also more suitable for applications aimed at optical orthogonal modes. Our simulation shows the D2NN performs well in applications like mode conversion, mode multiplexing/demultiplexing, and optical mode recognition.


Asunto(s)
Redes Neurales de la Computación , Simulación por Computador
18.
Opt Lett ; 47(3): 674-677, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35103705

RESUMEN

A Nd:YAG single-crystal fiber amplifier for the amplification of continuous-wave single-frequency laser end-pumped by a laser diode (LD) is investigated. With a two-stage amplification configuration, an output power of 60.4 W under the total incident pump power of 200 W is achieved, which is, to our knowledge, the highest power from a continuous-wave single-frequency laser achieved with a single-crystal fiber scheme. The extraction efficiency reaches 41.6% in the second amplification stage, which is comparable with Innoslab amplifiers. The beam quality factors M2 at the maximum output power in the horizontal and vertical direction are measured to be 1.51 and 1.38, respectively. The long-term power instability for 1 hour is 0.97%.

19.
Opt Lett ; 47(24): 6341-6344, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36538433

RESUMEN

Here we propose a polarization-dependent gradient phase modulation strategy and fabricate a local polarization-matched metasurface to add/drop polarization multiplexed cylindrical vector beams (CVBs). The two orthogonal linear polarization states in CVB multiplexing will represent as radial- and azimuthal-polarized CVBs, which means that we must introduce independent wave vectors to them for adding/dropping the polarization channels. By designing the rotation angle and geometric sizes of a meta-atom, a local polarization-matched propagation phase plasmonic metasurface is constructed, and the polarization-dependent gradient phases were loaded to perform this operation. As a proof of concept, the polarization multiplexed CVBs, carrying 150-Gbit/s quadrature phase shift keying signals, are successfully added and dropped, and the bit error rates approach 1 × 10-6. In addition to representing a route for adding/dropping polarization multiplexed CVBs, other functional phase modulation of arbitrary orthogonal linear polarization bases is expected, which might find potential applications in polarization encryption imaging, spatial polarization shaping, etc.

20.
Opt Express ; 29(8): 12723-12735, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33985023

RESUMEN

We investigate the process of dispersive waves (DWs) emitted from Gaussian pulse (GP) with an initial quadratic spectral phase (QSP). We show that the radiation of DWs is strongly affected by the QSP parameter. The conversion efficiency and resonant frequency of DWs are effectively enhanced and controlled by tuning the sign and magnitude of the initial QSP. At variance with the case of pure GP, the DWs emission is first advanced and then delayed for negatively QSP modulated GPs; while it is always delayed for positively QSP modulated GPs. We present a modified phase-matching formula that allows us to predict DWs spectral peaks. The resonant frequencies predicted by the phase-matching condition are in very good agreement with the results obtained from the numerical simulation based on the generalized nonlinear Schrödinger equation. The results presented here can be utilized as a effective tool to manipulate DWs emission for applications such as frequency conversion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA