Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.077
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 24(10): 695-713, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37280296

RESUMEN

Single-cell multi-omics technologies and methods characterize cell states and activities by simultaneously integrating various single-modality omics methods that profile the transcriptome, genome, epigenome, epitranscriptome, proteome, metabolome and other (emerging) omics. Collectively, these methods are revolutionizing molecular cell biology research. In this comprehensive Review, we discuss established multi-omics technologies as well as cutting-edge and state-of-the-art methods in the field. We discuss how multi-omics technologies have been adapted and improved over the past decade using a framework characterized by optimization of throughput and resolution, modality integration, uniqueness and accuracy, and we also discuss multi-omics limitations. We highlight the impact that single-cell multi-omics technologies have had in cell lineage tracing, tissue-specific and cell-specific atlas production, tumour immunology and cancer genetics, and in mapping of cellular spatial information in fundamental and translational research. Finally, we discuss bioinformatics tools that have been developed to link different omics modalities and elucidate functionality through the use of better mathematical modelling and computational methods.


Asunto(s)
Biología Computacional , Multiómica , Linaje de la Célula , Epigenoma , Metaboloma
2.
Cell ; 183(6): 1665-1681.e18, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33188776

RESUMEN

We present deterministic barcoding in tissue for spatial omics sequencing (DBiT-seq) for co-mapping of mRNAs and proteins in a formaldehyde-fixed tissue slide via next-generation sequencing (NGS). Parallel microfluidic channels were used to deliver DNA barcodes to the surface of a tissue slide, and crossflow of two sets of barcodes, A1-50 and B1-50, followed by ligation in situ, yielded a 2D mosaic of tissue pixels, each containing a unique full barcode AB. Application to mouse embryos revealed major tissue types in early organogenesis as well as fine features like microvasculature in a brain and pigmented epithelium in an eye field. Gene expression profiles in 10-µm pixels conformed into the clusters of single-cell transcriptomes, allowing for rapid identification of cell types and spatial distributions. DBiT-seq can be adopted by researchers with no experience in microfluidics and may find applications in a range of fields including developmental biology, cancer biology, neuroscience, and clinical pathology.


Asunto(s)
Código de Barras del ADN Taxonómico , Genómica , Especificidad de Órganos/genética , Animales , Automatización , Encéfalo/embriología , Análisis por Conglomerados , ADN Complementario/genética , Embrión de Mamíferos/metabolismo , Ojo/embriología , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones Endogámicos C57BL , Microfluídica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Análisis de la Célula Individual , Transcriptoma/genética
3.
Immunity ; 52(6): 1007-1021.e8, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32497523

RESUMEN

N6-methyladenosine (m6A) is the most abundant RNA modification, but little is known about its role in mammalian hematopoietic development. Here, we show that conditional deletion of the m6A writer METTL3 in murine fetal liver resulted in hematopoietic failure and perinatal lethality. Loss of METTL3 and m6A activated an aberrant innate immune response, mediated by the formation of endogenous double-stranded RNAs (dsRNAs). The aberrantly formed dsRNAs were long, highly m6A modified in their native state, characterized by low folding energies, and predominantly protein coding. We identified coinciding activation of pattern recognition receptor pathways normally tasked with the detection of foreign dsRNAs. Disruption of the aberrant immune response via abrogation of downstream Mavs or Rnasel signaling partially rescued the observed hematopoietic defects in METTL3-deficient cells in vitro and in vivo. Our results suggest that m6A modification protects against endogenous dsRNA formation and a deleterious innate immune response during mammalian hematopoietic development.


Asunto(s)
Adenosina/química , Hematopoyesis/genética , Hematopoyesis/inmunología , Inmunidad Innata/genética , ARN Bicatenario/metabolismo , Animales , Biomarcadores , Trastornos de Fallo de la Médula Ósea/etiología , Trastornos de Fallo de la Médula Ósea/metabolismo , Trastornos de Fallo de la Médula Ósea/patología , Diferenciación Celular/genética , Modelos Animales de Enfermedad , Epigénesis Genética , Expresión Génica , Células Madre Hematopoyéticas , Inmunofenotipificación , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Ratones Noqueados , ARN Bicatenario/química
4.
Cell ; 156(4): 649-62, 2014 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-24486105

RESUMEN

Reprogramming somatic cells to induced pluripotency by Yamanaka factors is usually slow and inefficient and is thought to be a stochastic process. We identified a privileged somatic cell state, from which acquisition of pluripotency could occur in a nonstochastic manner. Subsets of murine hematopoietic progenitors are privileged whose progeny cells predominantly adopt the pluripotent fate with activation of endogenous Oct4 locus after four to five divisions in reprogramming conditions. Privileged cells display an ultrafast cell cycle of ∼8 hr. In fibroblasts, a subpopulation cycling at a similar ultrafast speed is observed after 6 days of factor expression and is increased by p53 knockdown. This ultrafast cycling population accounts for >99% of the bulk reprogramming activity in wild-type or p53 knockdown fibroblasts. Our data demonstrate that the stochastic nature of reprogramming can be overcome in a privileged somatic cell state and suggest that cell-cycle acceleration toward a critical threshold is an important bottleneck for reprogramming. PAPERCLIP:


Asunto(s)
Reprogramación Celular , Células Progenitoras de Granulocitos y Macrófagos/citología , Células Madre Pluripotentes Inducidas , Animales , Células de la Médula Ósea , Diferenciación Celular , Fibroblastos/citología , Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Genes p53 , Células Progenitoras de Granulocitos y Macrófagos/metabolismo , Ratones
5.
Nature ; 616(7955): 113-122, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36922587

RESUMEN

Emerging spatial technologies, including spatial transcriptomics and spatial epigenomics, are becoming powerful tools for profiling of cellular states in the tissue context1-5. However, current methods capture only one layer of omics information at a time, precluding the possibility of examining the mechanistic relationship across the central dogma of molecular biology. Here, we present two technologies for spatially resolved, genome-wide, joint profiling of the epigenome and transcriptome by cosequencing chromatin accessibility and gene expression, or histone modifications (H3K27me3, H3K27ac or H3K4me3) and gene expression on the same tissue section at near-single-cell resolution. These were applied to embryonic and juvenile mouse brain, as well as adult human brain, to map how epigenetic mechanisms control transcriptional phenotype and cell dynamics in tissue. Although highly concordant tissue features were identified by either spatial epigenome or spatial transcriptome we also observed distinct patterns, suggesting their differential roles in defining cell states. Linking epigenome to transcriptome pixel by pixel allows the uncovering of new insights in spatial epigenetic priming, differentiation and gene regulation within the tissue architecture. These technologies are of great interest in life science and biomedical research.


Asunto(s)
Cromatina , Epigenoma , Mamíferos , Transcriptoma , Animales , Humanos , Ratones , Cromatina/genética , Cromatina/metabolismo , Epigénesis Genética , Epigenómica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Mamíferos/genética , Histonas/química , Histonas/metabolismo , Análisis de la Célula Individual , Especificidad de Órganos , Encéfalo/embriología , Encéfalo/metabolismo , Envejecimiento/genética
6.
Nature ; 609(7926): 375-383, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35978191

RESUMEN

Cellular function in tissue is dependent on the local environment, requiring new methods for spatial mapping of biomolecules and cells in the tissue context1. The emergence of spatial transcriptomics has enabled genome-scale gene expression mapping2-5, but the ability to capture spatial epigenetic information of tissue at the cellular level and genome scale is lacking. Here we describe a method for spatially resolved chromatin accessibility profiling of tissue sections using next-generation sequencing (spatial-ATAC-seq) by combining in situ Tn5 transposition chemistry6 and microfluidic deterministic barcoding5. Profiling mouse embryos using spatial-ATAC-seq delineated tissue-region-specific epigenetic landscapes and identified gene regulators involved in the development of the central nervous system. Mapping the accessible genome in the mouse and human brain revealed the intricate arealization of brain regions. Applying spatial-ATAC-seq to tonsil tissue resolved the spatially distinct organization of immune cell types and states in lymphoid follicles and extrafollicular zones. This technology progresses spatial biology by enabling spatially resolved chromatin accessibility profiling to improve our understanding of cell identity, cell state and cell fate decision in relation to epigenetic underpinnings in development and disease.


Asunto(s)
Ensamble y Desensamble de Cromatina , Secuenciación de Inmunoprecipitación de Cromatina , Cromatina , Animales , Encéfalo/metabolismo , Diferenciación Celular , Linaje de la Célula , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/genética , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Epigenómica , Perfilación de la Expresión Génica , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Ratones , Tonsila Palatina/citología , Tonsila Palatina/inmunología
7.
Nat Methods ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907114

RESUMEN

Advances in spatial omics technologies now allow multiple types of data to be acquired from the same tissue slice. To realize the full potential of such data, we need spatially informed methods for data integration. Here, we introduce SpatialGlue, a graph neural network model with a dual-attention mechanism that deciphers spatial domains by intra-omics integration of spatial location and omics measurement followed by cross-omics integration. We demonstrated SpatialGlue on data acquired from different tissue types using different technologies, including spatial epigenome-transcriptome and transcriptome-proteome modalities. Compared to other methods, SpatialGlue captured more anatomical details and more accurately resolved spatial domains such as the cortex layers of the brain. Our method also identified cell types like spleen macrophage subsets located at three different zones that were not available in the original data annotations. SpatialGlue scales well with data size and can be used to integrate three modalities. Our spatial multi-omics analysis tool combines the information from complementary omics modalities to obtain a holistic view of cellular and tissue properties.

8.
Plant Cell ; 36(1): 194-212, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37804098

RESUMEN

In plant leaves, starch is composed of glucan polymers that accumulate in chloroplasts as the products of photosynthesis during the day; starch is mobilized at night to continuously provide sugars to sustain plant growth and development. Efficient starch degradation requires the involvement of several enzymes, including ß-amylase and glucan phosphatase. However, how these enzymes cooperate remains largely unclear. Here, we show that the glucan phosphatase LIKE SEX FOUR 1 (LSF1) interacts with plastid NAD-dependent malate dehydrogenase (MDH) to recruit ß-amylase (BAM1), thus reconstituting the BAM1-LSF1-MDH complex. The starch hydrolysis activity of BAM1 drastically increased in the presence of LSF1-MDH in vitro. We determined the structure of the BAM1-LSF1-MDH complex by a combination of cryo-electron microscopy, crosslinking mass spectrometry, and molecular docking. The starch-binding domain of the dual-specificity phosphatase and carbohydrate-binding module of LSF1 was docked in proximity to BAM1, thus facilitating BAM1 access to and hydrolysis of the polyglucans of starch, thus revealing the molecular mechanism by which the LSF1-MDH complex improves the starch degradation activity of BAM1. Moreover, LSF1 is phosphatase inactive, and the enzymatic activity of MDH was dispensable for starch degradation, suggesting nonenzymatic scaffold functions for LSF1-MDH in starch degradation. These findings provide important insights into the precise regulation of starch degradation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , beta-Amilasa , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Malato Deshidrogenasa/metabolismo , beta-Amilasa/metabolismo , Simulación del Acoplamiento Molecular , Microscopía por Crioelectrón , Almidón/metabolismo , Glucanos/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
9.
Blood ; 141(20): 2508-2519, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-36800567

RESUMEN

Proinflammatory signaling is a hallmark feature of human cancer, including in myeloproliferative neoplasms (MPNs), most notably myelofibrosis (MF). Dysregulated inflammatory signaling contributes to fibrotic progression in MF; however, the individual cytokine mediators elicited by malignant MPN cells to promote collagen-producing fibrosis and disease evolution are yet to be fully elucidated. Previously, we identified a critical role for combined constitutive JAK/STAT and aberrant NF-κB proinflammatory signaling in MF development. Using single-cell transcriptional and cytokine-secretion studies of primary cells from patients with MF and the human MPLW515L (hMPLW515L) murine model of MF, we extend our previous work and delineate the role of CXCL8/CXCR2 signaling in MF pathogenesis and bone marrow fibrosis progression. Hematopoietic stem/progenitor cells from patients with MF are enriched for a CXCL8/CXCR2 gene signature and display enhanced proliferation and fitness in response to an exogenous CXCL8 ligand in vitro. Genetic deletion of Cxcr2 in the hMPLW515L-adoptive transfer model abrogates fibrosis and extends overall survival, and pharmacologic inhibition of the CXCR1/2 pathway improves hematologic parameters, attenuates bone marrow fibrosis, and synergizes with JAK inhibitor therapy. Our mechanistic insights provide a rationale for therapeutic targeting of the CXCL8/CXCR2 pathway among patients with MF.


Asunto(s)
Trastornos Mieloproliferativos , Neoplasias , Mielofibrosis Primaria , Humanos , Ratones , Animales , Mielofibrosis Primaria/patología , Trastornos Mieloproliferativos/genética , Transducción de Señal , Neoplasias/complicaciones , Citocinas/metabolismo , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo
10.
Exp Cell Res ; 435(1): 113912, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38176464

RESUMEN

Ferroptosis, a form of regulated cell death process, play an important role in myocardial ischemia‒reperfusion (I/R) injury. Glycyrrhizin (GL), a natural glycoconjugate triterpene, has the property to improve growth rate, immune regulation, antioxidant, anti-inflammatory. However, whether GL can attenuate myocardial I/R injury by modulating ferroptosis or other mechanisms are still unclear. In this study, SD rats underwent in vivo myocardial ischemia/reperfusion (I/R) surgery, while H9C2 cells were subjected to the hypoxia/reoxygenation (H/R) model for in vitro experiments. In addition, TAK-242, a TLR4-specific antagonist, and GL were also used to evaluate the effect and mechanisms of GL on the cardiac function and expression of ferroptosis-related gene and protein in vivo and vitro. The results show that GL decreased not only the expression of the inflammation-related factors (HMGB1, TNF-α, IL-6, IL-18 and IL-1ß), but also reduced the number of TUNEL-positive cardiomyocytes, and mitigated pathological alterations in I/R injury. In addition, GL decreased the levels of MDA, promoted antioxidant capacity such as GSH, CAT, Cu/Zn-SOD, Mn-SOD, and SOD in vivo and vitro. More importantly, GL and TAK-242 regulate ferroptosis-related protein and gene expression in I/R and H/R model. Surprisingly, GL may ameliorate cardiomyocyte ferroptosis and ultimately improves cardiac function induced by H/R via the HMGB1-TLR4-GPX4 axis. Therefore, we have highlighted a novel mechanism by which GL regulates inflammation, oxidative stress, and ferroptosis via the HMGB1-TLR4-GPX4 pathway to prevent myocardial I/R injury. GL appears to be a potentially applicable drug for the treatment of myocardial I/R injury.


Asunto(s)
Ferroptosis , Proteína HMGB1 , Daño por Reperfusión Miocárdica , Daño por Reperfusión , Sulfonamidas , Ratas , Animales , Daño por Reperfusión Miocárdica/metabolismo , Ácido Glicirrínico/farmacología , Receptor Toll-Like 4/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Proteína HMGB1/metabolismo , Ratas Sprague-Dawley , Apoptosis , Estrés Oxidativo , Daño por Reperfusión/patología , Inflamación/tratamiento farmacológico , Inflamación/patología , Superóxido Dismutasa/metabolismo
11.
Gut ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38902029

RESUMEN

OBJECTIVE: Hepatitis B surface antigen (HBsAg) loss is the optimal outcome for patients with chronic hepatitis B (CHB) but this rarely occurs with currently approved therapies. We aimed to develop and validate a prognostic model for HBsAg loss on treatment using longitudinal data from a large, prospectively followed, nationwide cohort. DESIGN: CHB patients receiving nucleos(t)ide analogues as antiviral treatment were enrolled from 50 centres in China. Quantitative HBsAg (qHBsAg) testing was prospectively performed biannually per protocol. Longitudinal discriminant analysis algorithm was used to estimate the incidence of HBsAg loss, by integrating clinical data of each patient collected during follow-up. RESULTS: In total, 6792 CHB patients who had initiated antiviral treatment 41.3 (IQR 7.6-107.6) months before enrolment and had median qHBsAg 2.9 (IQR 2.3-3.3) log10IU/mL at entry were analysed. With a median follow-up of 65.6 (IQR 51.5-84.7) months, the 5-year cumulative incidence of HBsAg loss was 2.4%. A prediction model integrating all qHBsAg values of each patient during follow-up, designated GOLDEN model, was developed and validated. The AUCs of GOLDEN model were 0.981 (95% CI 0.974 to 0.987) and 0.979 (95% CI 0.974 to 0.983) in the training and external validation sets, respectively, and were significantly better than those of a single qHBsAg measurement. GOLDEN model identified 8.5%-10.4% of patients with a high probability of HBsAg loss (5-year cumulative incidence: 17.0%-29.1%) and was able to exclude 89.6%-91.5% of patients whose incidence of HBsAg loss is 0. Moreover, the GOLDEN model consistently showed excellent performance among various subgroups. CONCLUSION: The novel GOLDEN model, based on longitudinal qHBsAg data, accurately predicts HBsAg clearance, provides reliable estimates of functional hepatitis B virus (HBV) cure and may have the potential to stratify different subsets of patients for novel anti-HBV therapies.

12.
Int J Cancer ; 154(10): 1709-1718, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38230569

RESUMEN

Lifestyle factors after a cancer diagnosis could influence the survival of cancer 60 survivors. To examine the independent and joint associations of healthy lifestyle factors with mortality outcomes among cancer survivors, four prospective cohorts (National Health and Nutrition Examination Survey [NHANES], National Health Interview Survey [NHIS], UK Biobank [UKB] and Kailuan study) across three countries. A healthy lifestyle score (HLS) was defined based on five common lifestyle factors (smoking, alcohol drinking, diet, physical activity and body mass index) that related to cancer survival. We used Cox proportional hazards regression to estimate the hazard ratios (HRs) for the associations of individual lifestyle factors and HLS with all-cause and cancer mortality among cancer survivors. During the follow-up period of 37,095 cancer survivors, 8927 all-cause mortality events were accrued in four cohorts and 4449 cancer death events were documented in the UK and US cohorts. Never smoking (adjusted HR = 0.77, 95% CI: 0.69-0.86), light alcohol consumption (adjusted HR = 0.86, 95% CI: 0.82-0.90), adequate physical activity (adjusted HR = 0.90, 95% CI: 0.85-0.94), a healthy diet (adjusted HR = 0.69, 95% CI: 0.61-0.78) and optimal BMI (adjusted HR = 0.89, 95% CI: 0.85-0.93) were significantly associated with a lower risk of all-cause mortality. In the joint analyses of HLS, the HR of all-cause and cancer mortality for cancer survivors with a favorable HLS (4 and 5 healthy lifestyle factors) were 0.55 (95% CI 0.42-0.64) and 0.57 (95% CI 0.44-0.72), respectively. This multicohort study of cancer survivors from the United States, the United Kingdom and China found that greater adherence to a healthy lifestyle might be beneficial in improving cancer prognosis.


Asunto(s)
Estilo de Vida Saludable , Neoplasias , Humanos , Estados Unidos , Estudios de Cohortes , Encuestas Nutricionales , Estudios Prospectivos , Estilo de Vida , Factores de Riesgo
13.
BMC Med ; 22(1): 119, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38481209

RESUMEN

BACKGROUND: Intravenous leiomyomatosis (IVL), pulmonary benign metastatic leiomyomatosis (PBML), and leiomyomatosis peritonealis disseminata (LPD) are leiomyomas with special growth patterns and high postoperative recurrence rates. We report the safety and efficacy of a pilot study of sirolimus in the treatment of recurrent IVL, PBML, and recurrent LPD. METHODS: This was a pilot study to evaluate the safety and efficacy of sirolimus in the treatment of leiomyomatosis (ClinicalTrials.gov identifier NCT03500367) conducted in China. Patients received oral sirolimus 2 mg once a day for a maximum of 60 months or until disease progression, intolerable toxicity, withdrawal of consent, or investigator decision to stop. The primary end point of this study was the objective response rate. Secondary end points included safety and tolerability, disease control rate, and progression-free survival. RESULTS: A total of 15 patients with leiomyomatosis were included in the study, including five with recurrent IVL, eight with PBML and two with recurrent LPD. The median follow-up time was 15 months (range 6-54 months), nine patients (60%) had treatment-related adverse events (including all levels), and two patients had treatment-related grade 3 or 4 adverse events. The objective response rate was 20.0% (95% CI, 7.1-45.2%), and the disease control rate was 86.7% (95% CI, 62.1-96.3%). Partial response was achieved in three patients. The median response time in the three partial response patients was 33 months (range 29-36 months), and the sustained remission time of these three patients reached 0, 18, and 25 months, respectively. CONCLUSIONS: Sirolimus was safe and effective in the treatment of recurrent IVL, PBML, and recurrent LPD. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT03500367. Registered on 18 April 2018.


Asunto(s)
Leiomiomatosis , Neoplasias Peritoneales , Humanos , Progresión de la Enfermedad , Leiomiomatosis/tratamiento farmacológico , Leiomiomatosis/complicaciones , Leiomiomatosis/patología , Neoplasias Peritoneales/complicaciones , Neoplasias Peritoneales/patología , Neoplasias Peritoneales/cirugía , Proyectos Piloto , Sirolimus/efectos adversos
14.
J Antimicrob Chemother ; 79(1): 128-133, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37991189

RESUMEN

OBJECTIVES: We explored the epidemiological and molecular characteristics of Candida parapsilosis sensu stricto isolates in China, and their mechanisms of azole resistance. METHODS: Azole susceptibilities of 2318 non-duplicate isolates were determined using CLSI broth microdilution. Isolates were genotyped by a microsatellite typing method. Molecular resistance mechanisms were also studied and functionally validated by CRISPR/Cas9-based genetic alterations. RESULTS: Fluconazole resistance occurred in 2.4% (n = 56) of isolates, and these isolates showed a higher frequency of distribution in ICU inpatients compared with susceptible isolates (48.2%, n = 27/56 versus 27.8%, 613/2208; P = 0.019). Microsatellite-genotyping analysis yielded 29 genotypes among 56 fluconazole-resistant isolates, of which 10 genotypes, including 37 isolates, belonged to clusters, persisting and transmitting in Chinese hospitals for 1-29 months. Clusters harbouring Erg11Y132F (5/10; 50%) were predominant in China. Among these, the second most dominant cluster MT07, including seven isolates, characteristically harbouring Erg11Y132F and Mrr1Q625K, lent its carriage to being one of the strongest associations with cross-resistance and high MICs of fluconazole (>256 mg/L) and voriconazole (2-8 mg/L), causing transmission across two hospitals. Among mutations tested, Mrr1Q625K led to the highest-level increase of fluconazole MIC (32-fold), while mutations located within or near the predicted transcription factor domain of Tac1 (D440Y, T492M and L518F) conferred cross-resistance to azoles. CONCLUSIONS: This study is the first Chinese report of persistence and transmissions of multiple fluconazole-resistant C. parapsilosis sensu stricto clones harbouring Erg11Y132F, and the first demonstration of the mutations Erg11G307A, Mrr1Q625K, Tac1L263S, Tac1D440Y and Tac1T492M as conferring resistance to azoles.


Asunto(s)
Candida parapsilosis , Fluconazol , Fluconazol/farmacología , Candida parapsilosis/genética , Antifúngicos/farmacología , Azoles/farmacología , China/epidemiología , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Fúngica/genética
15.
Nat Mater ; 22(10): 1175-1181, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37580366

RESUMEN

All-inorganic lead halide perovskites (CsPbX3, X = Cl, Br or I) are becoming increasingly important for energy conversion and optoelectronics because of their outstanding performance and enhanced environmental stability. Morphing perovskites into specific shapes and geometries without damaging their intrinsic functional properties is attractive for designing devices and manufacturing. However, inorganic semiconductors are often intrinsically brittle at room temperature, except for some recently reported layered or van der Waals semiconductors. Here, by in situ compression, we demonstrate that single-crystal CsPbX3 micropillars can be substantially morphed into distinct shapes (cubic, L and Z shapes, rectangular arches and so on) without localized cleavage or cracks. Such exceptional plasticity is enabled by successive slips of partial dislocations on multiple [Formula: see text] systems, as evidenced by atomic-resolution transmission electron microscopy and first-principles and atomistic simulations. The optoelectronic performance and bandgap of the devices were unchanged. Thus, our results suggest that CsPbX3 perovskites, as potential deformable inorganic semiconductors, may have profound implications for the manufacture of advanced optoelectronics and energy systems.

16.
BMC Microbiol ; 24(1): 255, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982358

RESUMEN

BACKGROUND: Alternaria alternata is the primary pathogen of potato leaf spot disease, resulting in significant potato yield losses globally. Endophytic microorganism-based biological control, especially using microorganisms from host plants, has emerged as a promising and eco-friendly approach for managing plant diseases. Therefore, this study aimed to isolate, identify and characterize the endophytic fungi from healthy potato leaves which had great antifungal activity to the potato leaf spot pathogen of A. alternata in vitro and in vivo. RESULTS: An endophytic fungal strain SD1-4 was isolated from healthy potato leaves and was identified as Talaromyces muroii through morphological and sequencing analysis. The strain SD1-4 exhibited potent antifungal activity against the potato leaf spot pathogen A. alternata Lill, with a hyphal inhibition rate of 69.19%. Microscopic and scanning electron microscope observations revealed that the strain SD1-4 grew parallel to, coiled around, shrunk and deformed the mycelia of A. alternata Lill. Additionally, the enzyme activities of chitinase and ß-1, 3-glucanase significantly increased in the hyphae of A. alternata Lill when co-cultured with the strain SD1-4, indicating severe impairment of the cell wall function of A. alternata Lill. Furthermore, the mycelial growth and conidial germination of A. alternata Lill were significantly suppressed by the aseptic filtrate of the strain SD1-4, with inhibition rates of 79.00% and 80.67%, respectively. Decrease of leaf spot disease index from 78.36 to 37.03 was also observed in potato plants treated with the strain SD1-4, along with the significantly increased plant growth characters including plant height, root length, fresh weight, dry weight, chlorophyll content and photosynthetic rate of potato seedlings. CONCLUSION: The endophyte fungus of T. muroii SD1-4 isolated from healthy potato leaves in the present study showed high biocontrol potential against potato leaf spot disease caused by A. alternata via direct parasitism or antifungal metabolites, and had positive roles in promoting potato plant growth.


Asunto(s)
Alternaria , Endófitos , Enfermedades de las Plantas , Hojas de la Planta , Solanum tuberosum , Talaromyces , Alternaria/crecimiento & desarrollo , Alternaria/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Solanum tuberosum/microbiología , Talaromyces/genética , Talaromyces/crecimiento & desarrollo , Endófitos/fisiología , Endófitos/aislamiento & purificación , Endófitos/genética , Hojas de la Planta/microbiología , Hifa/crecimiento & desarrollo , Antibiosis , Quitinasas/metabolismo , Agentes de Control Biológico , Control Biológico de Vectores/métodos
17.
Hepatology ; 78(2): 592-606, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36896974

RESUMEN

BACKGROUND AND AIM: Long-term maintenance of viral control, even HBsAg loss, remains a challenge for chronic hepatitis B (CHB) patients undergoing nucleos(t)ide analogue (NA) discontinuation. This study aimed to investigate the relationship between HBV-specific T-cell responses targeting peptides spanning the whole proteome and clinical outcomes in CHB patients after NA discontinuation. APPROACH AND RESULTS: Eighty-eight CHB patients undergoing NA discontinuation were classified as responders (remained relapse-free up to 96 weeks) or relapsers (relapsed patients who underwent NA retreatment for up to 48 weeks and reachieved stable viral control). HBV-specific T-cell responses were detected at baseline and longitudinally throughout the follow-up. We found responders had a greater magnitude of HBV polymerase (Pol)-specific T-cell responses than relapsers at baseline. After long-term NA discontinuation, simultaneously enhanced HBV Core-induced and Pol-induced responses were observed in responders. Particularly, responders with HBsAg loss possessed enhanced HBV Envelope (Env)-induced responses after short-term and long-term follow-up. Notably, CD4 + T cells accounted for the predominance of HBV-specific T-cell responses. Correspondingly, CD4-deficient mice showed attenuated HBV-specific CD8 + T-cell responses, reduced HBsAb-producing B cells, and delayed HBsAg loss; in contrast, in vitro addition of CD4 + T cells promoted HBsAb production by B cells. Besides, IL-9, rather than PD-1 blockade, enhanced HBV Pol-specific CD4 + T-cell responses. CONCLUSION: HBV-specific CD4 + T-cell responses induced by the targeted peptide possess specificities for long-term viral control and HBsAg loss in CHB patients undergoing NA discontinuation, indicating that CD4 + T cells specific to distinct HBV antigens may endow with divergent antiviral potential.


Asunto(s)
Linfocitos T CD4-Positivos , Antígenos de Superficie de la Hepatitis B , Hepatitis B Crónica , Animales , Ratones , Antivirales/uso terapéutico , ADN Viral , Antígenos e de la Hepatitis B , Virus de la Hepatitis B , Hepatitis B Crónica/tratamiento farmacológico , Resultado del Tratamiento , Nucleósidos/análogos & derivados
18.
Insect Mol Biol ; 33(1): 17-28, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37707297

RESUMEN

In insects, vitellogenin (Vg) is generally viewed as a female-specific protein. Its primary function is to supply nutrition to developing embryos. Here, we reported Vg from the male adults of a natural predator, Chrysopa pallens. The male Vg was depleted by RNAi. Mating with Vg-deficient male downregulated female Vg expression, suppressed ovarian development and decreased reproductive output. Whole-organism transcriptome analysis after male Vg knockdown showed no differential expression of the known spermatogenesis-related regulators and seminal fluid protein genes, but a sharp downregulation of an unknown gene, which encodes a testis-enriched big protein (Vcsoo). Separate knockdown of male Vg and Vcsoo disturbed the assembly of spermatid cytoplasmic organelles in males and suppressed the expansion of ovary germarium in mated females. These results demonstrated that C. pallens male Vg signals through the downstream Vcsoo and regulates male and female reproduction.


Asunto(s)
Testículo , Vitelogeninas , Femenino , Masculino , Animales , Vitelogeninas/genética , Vitelogeninas/metabolismo , Insectos/genética , Reproducción , Gametogénesis
19.
Liver Int ; 44(3): 749-759, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38131420

RESUMEN

BACKGROUND & AIMS: aMAP score, as a hepatocellular carcinoma risk score, is proven to be associated with the degree of chronic hepatitis B-related liver fibrosis. We aimed to evaluate the ability of aMAP score for metabolic dysfunction-associated steatotic liver disease (MASLD; formerly NAFLD)-related fibrosis diagnosis and establish a machine-learning (ML) model to improve the diagnostic performance. METHODS: A total of 946 biopsy-proved MASLD patients from China and the United States were included in the analysis. The aMAP score, demographic/clinical indices and liver stiffness measurement (LSM) were included in seven ML algorithms to build fibrosis diagnostic models in the training set (N = 703). The performance of ML models was evaluated in the external validation set (N = 125). RESULTS: The AUROCs of aMAP versus fibrosis-4 index (FIB-4) and aspartate aminotransferase-platelet ratio (APRI) in cirrhosis and advanced fibrosis were (0.850 vs. 0.857 [P = 0.734], 0.735 [P = 0.001]) and (0.759 vs. 0.795 [P = 0.027], 0.709 [P = 0.049]). When using dual cut-off values, aMAP had a smaller uncertainty area and higher accuracy (26.9%, 86.6%) than FIB-4 (37.3%, 85.0%) and APRI (59.0%, 77.3%) in cirrhosis diagnosis. The seven ML models performed satisfactorily in most cases. In the validation set, the ML model comprising LSM and 5 indices (including age, sex, platelets, albumin and total bilirubin used in aMAP calculator), built by logistic regression algorithm (called LSM-plus model), exhibited excellent performance. In cirrhosis and advanced fibrosis detection, the LSM-plus model had higher accuracy (96.8%, 91.2%) than LSM alone (86.4%, 67.2%) and Agile score (76.0%, 83.2%), respectively. Additionally, the LSM-plus model also displayed high specificity (cirrhosis: 98.3%; advanced fibrosis: 92.6%) with satisfactory AUROC (0.932, 0.875, respectively) and sensitivity (88.9%, 82.4%, respectively). CONCLUSIONS: The aMAP score is capable of diagnosing MASLD-related fibrosis. The LSM-plus model could accurately identify MASLD-related cirrhosis and advanced fibrosis.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Hígado , Humanos , Hígado/patología , Biopsia , Biomarcadores , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/patología , Fibrosis , Aspartato Aminotransferasas , Curva ROC
20.
J Pathol ; 260(2): 112-123, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36807305

RESUMEN

Multiple myeloma (MM) remains an incurable haematological malignancy despite substantial advances in therapy. Hypoxic bone marrow induces metabolic rewiring in MM cells contributing to survival and drug resistance. Therefore, targeting metabolic pathways may offer an alternative treatment option. In this study, we repurpose two FDA-approved drugs, syrosingopine and metformin. Syrosingopine was used as a dual inhibitor of monocarboxylate transporter 1 and 4 (MCT1/4) and metformin as an inhibitor for oxidative phosphorylation (OXPHOS). Anti-tumour effects were evaluated for single agents and in combination therapy. Survival and expression data for MCT1/MCT4 were obtained from the Total Therapy 2, Mulligan, and Multiple Myeloma Research Foundation cohorts. Cell death, viability, and proliferation were measured using Annexin V/7-AAD, CellTiterGlo, and BrdU, respectively. Metabolic effects were assessed using Seahorse Glycolytic Rate assays and LactateGlo assays. Differential protein expression was determined using western blotting, and the SUnSET method was implemented to quantify protein synthesis. Finally, the syngeneic 5T33MMvv model was used for in vivo analysis. High-level expression of MCT1 and MCT4 both correlated with a significantly lower overall survival of patients. Lactate production as well as MCT1/MCT4 expression were significantly upregulated in hypoxia, confirming the Warburg effect in MM. Dual inhibition of MCT1/4 with syrosingopine resulted in intracellular lactate accumulation and reduced cell viability and proliferation. However, only at higher doses (>10 µm) was syrosingopine able to induce cell death. By contrast, combination treatment of syrosingopine with metformin was highly cytotoxic for MM cell lines and primary patient samples and resulted in a suppression of both glycolysis and OXPHOS. Moreover, pathway analysis revealed an upregulation of the energy sensor p-AMPKα and more downstream a reduction in protein synthesis. Finally, the combination treatment resulted in a significant reduction in tumour burden in vivo. This study proposes an alternative combination treatment for MM and provides insight into intracellular effects. © 2023 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Antineoplásicos , Metformina , Mieloma Múltiple , Humanos , Metformina/farmacología , Mieloma Múltiple/metabolismo , Antineoplásicos/farmacología , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA