Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurochem ; 166(2): 215-232, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37284938

RESUMEN

Abnormal activation of the extrasynaptic N-methyl-d-aspartate receptor (NMDAR) contributes to the pathogenesis of Alzheimer's disease (AD). Ceftriaxone (Cef) can improve cognitive impairment by upregulating glutamate transporter-1 and promoting the glutamate-glutamine cycle in an AD mouse model. This study aimed to investigate the effects of Cef on synaptic plasticity and cognitive-behavioral impairment and to unravel the associated underlying mechanisms. We used an APPswe/PS1dE9 (APP/PS1) mouse model of AD in this study. Extrasynaptic components from hippocampal tissue homogenates were isolated using density gradient centrifugation. Western blot was performed to evaluate the expressions of extrasynaptic NMDAR and its downstream elements. Intracerebroventricular injections of adeno-associated virus (AAV)-striatal enriched tyrosine phosphatase 61 (STEP61 ) and AAV-STEP61 -shRNA were used to modulate the expressions of STEP61 and extrasynaptic NMDAR. Long-term potentiation (LTP) and Morris water maze (MWM) tests were performed to evaluate the synaptic plasticity and cognitive function. The results showed that the expressions of GluN2B and GluN2BTyr1472 in the extrasynaptic fraction were upregulated in AD mice. Cef treatment effectively prevented the upregulation of GluN2B and GluN2BTyr1472 expressions. It also prevented changes in the downstream signals of extrasynaptic NMDAR, including increased expressions of m-calpain and phosphorylated p38 MAPK in AD mice. Furthermore, STEP61 upregulation enhanced, whereas STEP61 downregulation reduced the Cef-induced inhibition of the expressions of GluN2B, GluN2BTyr1472 , and p38 MAPK in the AD mice. Similarly, STEP61 modulation affected Cef-induced improvements in induction of LTP and performance in MWM tests. In conclusion, Cef improved synaptic plasticity and cognitive behavioral impairment in APP/PS1 AD mice by inhibiting the overactivation of extrasynaptic NMDAR and STEP61 cleavage due to extrasynaptic NMDAR activation.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Ceftriaxona/farmacología , Ceftriaxona/uso terapéutico , Modelos Animales de Enfermedad , Plasticidad Neuronal/fisiología , Cognición , Ratones Transgénicos , Receptores de N-Metil-D-Aspartato/metabolismo
2.
NMR Biomed ; 33(10): e4326, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32691472

RESUMEN

Direct myelin imaging is promising for characterization of multiple sclerosis (MS) brains at diagnosis and in response to therapy. In this study, a 3D inversion recovery-prepared ultrashort echo time cones (IR-UTE-Cones) sequence was used for both morphological and quantitative imaging of myelin on a clinical 3 T scanner. Myelin powder phantoms with different myelin concentrations were imaged with the 3D UTE-Cones sequence and it showed a strong correlation between concentrations and UTE-Cones signals, demonstrating the ability of the UTE-Cones sequence to directly image myelin in the brain. Quantitative myelin imaging with multi-echo IR-UTE-Cones sequences show similar T2 * values for a D2 O-exchanged myelin phantom (T2 * = 0.33 ± 0.04 ms), ex vivo brain specimens (T2 * = 0.20 ± 0.04 ms) and in vivo healthy volunteers (T2 * = 0.254 ± 0.023 ms), further confirming the feasibility of 3D IR-UTE-Cones sequences for direct myelin imaging in vivo. In ex vivo MS brain study, signal loss is observed in MS lesions, which was confirmed with histology. For the in vivo study, the lesions in MS patients also show myelin signal loss using the proposed direct myelin imaging method, demonstrating the clinical potential for MS diagnosis. Furthermore, the measured IR-UTE-Cones signal intensities show a significant difference between normal-appearing white matter in MS patients and normal white matter in volunteers, which cannot be found in clinical used T2 -FLAIR sequences. Thus, the proposed 3D IR-UTE-Cones sequence showed clinical potential for MS diagnosis with the capability of direct myelin detection of the whole brain.


Asunto(s)
Imagenología Tridimensional , Imagen por Resonancia Magnética , Vaina de Mielina/patología , Adulto , Anciano de 80 o más Años , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Bovinos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Procesamiento de Señales Asistido por Computador , Factores de Tiempo
3.
Magn Reson Med ; 80(2): 538-547, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29271083

RESUMEN

PURPOSE: UTE sequences with a minimal nominal TE of 8 µs have shown promise for direct imaging of myelin protons (T2 , < 1 ms). However, there is still debate about the efficiency of 2D slice-selective UTE sequences in exciting myelin protons because the half excitation pulses used in these sequences have a relatively long duration (e.g., 0.3-0.6 ms). Here, we compared UTE and inversion-recovery (IR) UTE sequences used with either hard or half excitation pulses (durations 32 µs or 472 µs, respectively) for imaging myelin in native and deuterated ovine brain at 3T. METHODS: Freshly frozen ovine brains were dissected into ∼2 mm-thick pure white matter and ∼3 to 8 mm-thick cerebral hemisphere specimens, which were imaged before and/or after different immersion time in deuterium oxide. RESULTS: Bicomponent T2* analysis of UTE signals obtained with hard excitation pulses detected an ultrashort T2 component (STC) fraction (fS ) of 0% to 10% in native specimens, and up to ∼86% in heavily deuterated specimens. fS values were significantly affected by the TIs used in IR-UTE sequences with either hard or half excitation pulses in native specimens but not in heavily deuterated specimens. The STC T2* was in the range of 150 to 400 µs in all UTE and IR-UTE measurements obtained with either hard or half excitation pulses. CONCLUSION: Our results further support myelin protons as the major source of the ultrashort T2* signals seen on IR-UTE images and demonstrate the potential of IR-UTE sequences with half excitation pulses for directly imaging myelin using clinical scanners. Magn Reson Med 80:538-547, 2017. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Química Encefálica/fisiología , Vaina de Mielina/química , Espectroscopía de Protones por Resonancia Magnética/métodos , Sustancia Blanca/diagnóstico por imagen , Animales , Deuterio/química , Sustancia Gris/diagnóstico por imagen , Protones , Ovinos , Procesamiento de Señales Asistido por Computador
4.
NMR Biomed ; 31(9): e3948, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30011103

RESUMEN

Peripheral nerves are a composite tissue consisting of neurovascular elements packaged within a well-organized extracellular matrix. Their composition, size, and anatomy render nerves a challenging medical imaging target. In contrast to morphological MRI, which represents the predominant approach to nerve imaging, quantitative MRI sequences can provide information regarding tissue composition. Here, we applied standard clinical Carr-Purcell-Meiboom-Gill (CPMG) and experimental three-dimensional (3D) ultrashort echo time (UTE) Cones sequences for quantitative nerve imaging including T2 measurement with single-component analysis, T2 * measurement with single-component and bi-component analyses, and magnetization transfer ratio (MTR) analysis. We demonstrated the feasibility and the high quality of single-component T2 *, bi-component T2 *, and MTR approaches to analyze nerves imaged with clinically deployed 3D UTE Cones pulse sequences. For 24 single fascicles from eight nerves, we measured a mean single-component T2 * of 22.6 ±8.9 ms, and a short T2 * component (STC) with a mean T2 * of 1.7 ±1.0 ms and a mean fraction of (6.74 ±4.31)% in bi-component analysis. For eight whole nerves, we measured a mean single-component T2 * of 16.7 ±2.2 ms, and an STC with a mean T2 * of 3.0 ±1.0 ms and a mean fraction of (15.56 ±7.07)% in bi-component analysis. For nine fascicles from three healthy nerves, we measured a mean MTR of (25.2 ±1.9)% for single fascicles and a mean MTR of (23.6 ±0.9)% for whole nerves. No statistically significant correlation was observed between any MRI parameter and routine histological outcomes, perhaps due to the small sample size and lack of apparent sample pathology. Overall, we have successfully demonstrated the feasibility of measuring quantitative MR outcomes ex vivo, which might reflect features of nerve structure and macromolecular content. These methods should be validated comprehensively on a larger and more diverse set of nerve samples, towards the interpretation of in vivo outcomes. These approaches have new and broad implications for the management of nerve disease, injury, and repair.


Asunto(s)
Imagen por Resonancia Magnética , Nervio Tibial/diagnóstico por imagen , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Factibilidad , Femenino , Humanos , Imagenología Tridimensional , Masculino , Persona de Mediana Edad , Factores de Tiempo , Adulto Joven
5.
Zhongguo Dang Dai Er Ke Za Zhi ; 20(4): 274-278, 2018 Apr.
Artículo en Zh | MEDLINE | ID: mdl-29658450

RESUMEN

OBJECTIVE: To study the influence of acute pancreatitis in pregnancy (APIP) on pregnancy outcomes and neonates. METHODS: A retrospective analysis was performed for 33 APIP patients and 31 neonates born alive. RESULTS: Of the 33 APIP patients, 26 (79%) developed APIP in the late pregnancy. Fourteen (45%) patients had hyperlipidemic APIP, 13 (42%) had biliary APIP, and 4 (13%) had other types of APIP. According to the severity, 22 (67%) were mild APIP, 5 (15%) were moderate APIP, and 6 were severe APIP. None of the 33 APIP patients died. Among the 20 patients with term delivery, 11 underwent termination of pregnancy; among the 10 patients with preterm delivery, 9 underwent termination of pregnancy; two patients experienced intrauterine fetal death, and one experienced abortion during the second trimester. Among the 31 neonates born alive (two of them were twins), 1 (3%) died, 12 (39%) experienced neonatal hyperbilirubinemia, 8 (26%) had neonatal hypoglycemia, 6 (19%) had neonatal respiratory distress syndrome, 5 (16%) experienced infectious diseases, and 2 (6%) experienced intracranial hemorrhage. The hyperlipidemic APIP group had a higher percentage of patients undergoing termination of pregnancy than the biliary APIP and other types of APIP groups (P<0.05). The incidence rate of preterm infants in the moderate APIP was higher than in the mild and severe APIP groups (P<0.05). The mean birth weights of neonates were the lowest in the moderate APIP group. The incidence rates of neonatal respiratory distress syndrome, intracranial hemorrhage, and infectious disease were the lowest in the mild APIP group (P<0.05). CONCLUSIONS: APIP can lead to adverse pregnancy outcomes and neonatal diseases, which are associated with the severity of pancreatitis.


Asunto(s)
Pancreatitis/complicaciones , Complicaciones del Embarazo , Enfermedad Aguda , Peso al Nacer , Femenino , Humanos , Recién Nacido , Recien Nacido Prematuro , Masculino , Embarazo , Estudios Retrospectivos
6.
NMR Biomed ; 30(10)2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28731616

RESUMEN

Inversion recovery ultrashort echo time (IR-UTE) imaging holds the potential to directly characterize MR signals from ultrashort T2 tissue components (STCs), such as collagen in cartilage and myelin in brain. The application of IR-UTE for myelin imaging has been challenging because of the high water content in brain and the possibility that the ultrashort T2 * signals are contaminated by water protons, including those associated with myelin sheaths. This study investigated such a possibility in an ovine brain D2 O exchange model and explored the potential of IR-UTE imaging for the quantification of ultrashort T2 * signals in both white and gray matter at 3 T. Six specimens were examined before and after sequential immersion in 99.9% D2 O. Long T2 MR signals were measured using a clinical proton density-weighted fast spin echo (PD-FSE) sequence. IR-UTE images were first acquired with different inversion times to determine the optimal inversion time to null the long T2 signals (TInull ). Then, at this TInull , images with echo times (TEs) of 0.01-4 ms were acquired to measure the T2 * values of STCs. The PD-FSE signal dropped to near zero after 24 h of immersion in D2 O. A wide range of TInull values were used at different time points (240-330 ms for white matter and 320-350 ms for gray matter at TR = 1000 ms) because the T1 values of the long T2 tissue components changed significantly. The T2 * values of STCs were 200-300 µs in both white and gray matter (comparable with the values obtained from myelin powder and its mixture with D2 O or H2 O), and showed minimal changes after sequential immersion. The ultrashort T2 * signals seen on IR-UTE images are unlikely to be from water protons as they are exchangeable with deuterons in D2 O. The source is more likely to be myelin itself in white matter, and might also be associated with other membranous structures in gray matter.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Ovinos/fisiología , Animales , Sustancia Gris/diagnóstico por imagen , Protones , Factores de Tiempo , Sustancia Blanca/diagnóstico por imagen
7.
Neuroimage ; 123: 22-32, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26306991

RESUMEN

The cortex contains extensive descending projections, yet the impact of cortical input on brainstem processing remains poorly understood. In the central auditory system, the auditory cortex contains direct and indirect pathways (via brainstem cholinergic cells) to nuclei of the auditory midbrain, called the inferior colliculus (IC). While these projections modulate auditory processing throughout the IC, single neuron recordings have samples from only a small fraction of cells during stimulation of the corticofugal pathway. Furthermore, assessments of cortical feedback have not been extended to sensory modalities other than audition. To address these issues, we devised blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) paradigms to measure the sound-evoked responses throughout the rat IC and investigated the effects of bilateral ablation of either auditory or visual cortices. Auditory cortex ablation increased the gain of IC responses to noise stimuli (primarily in the central nucleus of the IC) and decreased response selectivity to forward species-specific vocalizations (versus temporally reversed ones, most prominently in the external cortex of the IC). In contrast, visual cortex ablation decreased the gain and induced a much smaller effect on response selectivity. The results suggest that auditory cortical projections normally exert a large-scale and net suppressive influence on specific IC subnuclei, while visual cortical projections provide a facilitatory influence. Meanwhile, auditory cortical projections enhance the midbrain response selectivity to species-specific vocalizations. We also probed the role of the indirect cholinergic projections in the auditory system in the descending modulation process by pharmacologically blocking muscarinic cholinergic receptors. This manipulation did not affect the gain of IC responses but significantly reduced the response selectivity to vocalizations. The results imply that auditory cortical gain modulation is mediated primarily through direct projections and they point to future investigations of the differential roles of the direct and indirect projections in corticofugal modulation. In summary, our imaging findings demonstrate the large-scale descending influences, from both the auditory and visual cortices, on sound processing in different IC subdivisions. They can guide future studies on the coordinated activity across multiple regions of the auditory network, and its dysfunctions.


Asunto(s)
Corteza Auditiva/fisiología , Percepción Auditiva/fisiología , Colículos Inferiores/fisiología , Corteza Visual/fisiología , Estimulación Acústica , Animales , Mapeo Encefálico , Potenciales Evocados Auditivos , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/fisiología , Ratas , Ratas Sprague-Dawley , Vocalización Animal
8.
Magn Reson Med ; 73(1): 59-69, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24469956

RESUMEN

PURPOSE: Intramyocellular lipid (IMCL) droplets are dynamic organelles whose morphology reflects their vital roles in lipid synthesis, usage, and storage in muscle energy metabolism. To develop noninvasive means to measure droplet microstructure in vivo, we investigated the molecular diffusion behavior of IMCL with diffusion magnetic resonance spectroscopy. METHODS: Using extremely large diffusion weighting, we measured the IMCL apparent diffusion coefficients (ADCs) in hindlimb muscle of rodents from normal feeding, 60-h fasting, streptozotocin-induced diabetic, and high-fat-diet-induced obese groups. RESULTS: IMCL ADCs decreased markedly with diffusion time, confirming the restricted diffusion of lipid molecules within IMCL droplets. IMCL droplet size, determined by transmission electron microscopy, was closely correlated with ADC. IMCL ADC was sensitive to metabolic alterations, decreasing in the 60-h fasting and diabetic groups while increasing in the obese group. These findings indicated that the IMCL droplet size decreased following 60-h fasting and in STZ-induced diabetes but increased in high-fat-diet-induced obesity. CONCLUSION: MR diffusion characterization of IMCL droplet size provides a unique means to examine the intracellular lipid dynamics and metabolic abnormalities in vivo.


Asunto(s)
Algoritmos , Gotas Lipídicas/química , Gotas Lipídicas/ultraestructura , Lípidos/análisis , Espectroscopía de Resonancia Magnética/métodos , Fibras Musculares Esqueléticas/química , Animales , Rastreo Celular/métodos , Células Cultivadas , Imagen de Difusión por Resonancia Magnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Fibras Musculares Esqueléticas/citología , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
9.
Neuroimage ; 90: 235-45, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24394694

RESUMEN

The rodents are an increasingly important model for understanding the mechanisms of development, plasticity, functional specialization and disease in the visual system. However, limited tools have been available for assessing the structural and functional connectivity of the visual brain network globally, in vivo and longitudinally. There are also ongoing debates on whether functional brain connectivity directly reflects structural brain connectivity. In this study, we explored the feasibility of manganese-enhanced MRI (MEMRI) via 3 different routes of Mn(2+) administration for visuotopic brain mapping and understanding of physiological transport in normal and visually deprived adult rats. In addition, resting-state functional connectivity MRI (RSfcMRI) was performed to evaluate the intrinsic functional network and structural-functional relationships in the corresponding anatomical visual brain connections traced by MEMRI. Upon intravitreal, subcortical, and intracortical Mn(2+) injection, different topographic and layer-specific Mn enhancement patterns could be revealed in the visual cortex and subcortical visual nuclei along retinal, callosal, cortico-subcortical, transsynaptic and intracortical horizontal connections. Loss of visual input upon monocular enucleation to adult rats appeared to reduce interhemispheric polysynaptic Mn(2+) transfer but not intra- or inter-hemispheric monosynaptic Mn(2+) transport after Mn(2+) injection into visual cortex. In normal adults, both structural and functional connectivity by MEMRI and RSfcMRI was stronger interhemispherically between bilateral primary/secondary visual cortex (V1/V2) transition zones (TZ) than between V1/V2 TZ and other cortical nuclei. Intrahemispherically, structural and functional connectivity was stronger between visual cortex and subcortical visual nuclei than between visual cortex and other subcortical nuclei. The current results demonstrated the sensitivity of MEMRI and RSfcMRI for assessing the neuroarchitecture, neurophysiology and structural-functional relationships of the visual brains in vivo. These may possess great potentials for effective monitoring and understanding of the basic anatomical and functional connections in the visual system during development, plasticity, disease, pharmacological interventions and genetic modifications in future studies.


Asunto(s)
Mapeo Encefálico/métodos , Manganeso , Corteza Visual/anatomía & histología , Vías Visuales/anatomía & histología , Animales , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/métodos , Ratas , Ratas Sprague-Dawley , Descanso
10.
NMR Biomed ; 26(9): 1089-95, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23417762

RESUMEN

The amelioration of secondary neurological damage is among the most important therapeutic goals for patients with intracerebral hemorrhage (ICH). Secondary injury of the ipsilateral substantia nigra (SN) and pyramidal tract (PY) is common after cerebral stroke. Such injury has been characterized previously by anatomical or diffusion MRI, but not in a comprehensive manner, and the knowledge regarding the contralateral changes is relatively poor. This study examined longitudinally both contralateral and ipsilateral SN and PY changes following experimental ICH with diffusion tensor imaging (DTI) and histology. ICH was induced in 14 Sprague-Dawley rats by the infusion of collagenase into the right striatum. Four-shot, spin-echo, echo-planar DTI was performed at 7 T with a b value of 1000 s/mm(2) and 30 diffusion gradient directions at 3.5 h and days 1, 3, 7, 14, 42 and 120 after ICH. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (λ// ) and radial diffusivity (λ┴ ) were measured in SN and PY accordingly. Two to three rats were sacrificed at days 3, 7, 42 and 120 for histology. The contralateral SN showed an increase in λ// with perivascular enlargement during the first 3 days after ICH. The ipsilateral SN showed increases in FA, λ// , λ┴ and MD at day 1, dramatic decreases at day 3 with neuronal degeneration and neuropil vacuolation, and subsequent gradual normalization. The contralateral PY showed diffusivity decreases at day 1. The ipsilateral PY showed early decreases and then late increases in MD and λ┴, and continuously decreasing FA and λ// with progressive axonal loss and demyelination. In summary, DTI revealed early bilateral changes in SN and PY following ICH. The evolution of the ipsilateral parameters correlated with the histological findings. In the ipsilateral PY, λ// and λ┴ changes indicated evolving and complex pathological processes underlying the monotonic FA decrease. These results support the use of quantitative multiparametric DTI for the evaluation of SN and PY injuries in clinical and preclinical investigations of ICH.


Asunto(s)
Hemorragia Cerebral/patología , Imagen de Difusión Tensora , Tractos Piramidales/patología , Sustancia Negra/patología , Animales , Femenino , Hematoma/patología , Proteínas de Neurofilamentos/metabolismo , Ratas , Ratas Sprague-Dawley
11.
Brain Res Bull ; 200: 110683, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37301482

RESUMEN

Synapse loss is a major contributor to cognitive dysfunction in Alzheimer's disease (AD). Impairments in the expression and/or glutamate uptake activity of glia glutamate transporter-1 (GLT-1) contribute to synapse loss in AD. Hence, targeting the restoration of GLT-1 activity may have potential for alleviating synapse loss in AD. Ceftriaxone (Cef) can upregulate the expression and glutamate uptake activity of GLT-1 in many disease models, including those for AD. The present study investigated the effects of Cef on synapse loss and the role of GLT-1 using APP/PS1 transgenic and GLT-1 knockdown APP/PS1 AD mice. Furthermore, the involvement of microglia in the process was investigated due to its important role in synapse loss in AD. We found that Cef treatment significantly ameliorated synapse loss and dendritic degeneration in APP/PS1 AD mice, evidenced by an increased dendritic spine density, decreased dendritic beading density, and upregulated levels of postsynaptic density protein 95 (PSD95) and synaptophysin. The effects of Cef were suppressed by GLT-1 knockdown in GLT-1+/-/APP/PS1 AD mice. Simultaneously, Cef treatment inhibited ionized calcium binding adapter molecule 1 (Iba1) expression, decreased the proportion of CD11b+CD45hi cells, declined interleukin-6 (IL-6) content, and reduced the co-expression of Iba1 with PSD95 or synaptophysin in APP/PS1 AD mice. In conclusion, Cef treatment ameliorated synapse loss and dendritic degeneration in APP/PS1 AD mice in a GLT-1-dependent manner, and the inhibitory effect of Cef on the activation of microglia/macrophages and their phagocytosis for synaptic elements contributed to the mechanism.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Ceftriaxona/farmacología , Microglía/metabolismo , Sinaptofisina/metabolismo , Ratones Transgénicos , Hipocampo/metabolismo , Ácido Glutámico/metabolismo , Sinapsis/metabolismo , Macrófagos/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Modelos Animales de Enfermedad , Precursor de Proteína beta-Amiloide/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Péptidos beta-Amiloides/metabolismo
12.
Neuroimage ; 61(4): 978-86, 2012 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-22445952

RESUMEN

Tonotopy, the topographic encoding of sound frequency, is the fundamental property of the auditory system. Invasive techniques lack the spatial coverage or frequency resolution to rigorously investigate tonotopy. Conventional auditory fMRI is corrupted by significant image distortion, sporadic acoustic noise and inadequate frequency resolution. We developed an efficient and high fidelity auditory fMRI method that integrates continuous frequency sweeping stimulus, distortion free MRI sequence with stable scanner noise and Fourier analysis. We demonstrated this swept source imaging (SSI) in the rat inferior colliculus and obtained tonotopic maps with ~2 kHz resolution and 40 kHz bandwidth. The results were vastly superior to those obtained by conventional fMRI mapping approach and in excellent agreement with invasive findings. We applied SSI to examine tonotopic injury following developmental noise exposure and observed that the tonotopic organization was significantly disrupted. With SSI, we also observed the subtle effects of sound pressure level on tonotopic maps, reflecting the complex neuronal responses associated with asymmetric tuning curves. This in vivo and noninvasive technique will greatly facilitate future investigation of tonotopic plasticity and disorders and auditory information processing. SSI can also be adapted to study topographic organization in other sensory systems such as retinotopy and somatotopy.


Asunto(s)
Percepción Auditiva/fisiología , Mapeo Encefálico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Colículos Inferiores/fisiología , Imagen por Resonancia Magnética/métodos , Estimulación Acústica , Animales , Ratas , Ratas Sprague-Dawley
13.
Magn Reson Med ; 68(4): 1202-10, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22213133

RESUMEN

Chromium (Cr) has been used histologically to stabilize lipid fractions in the retina and is suggested to enhance oxidizable lipids in brain MRI. This study explored the feasibility, sensitivity, and specificity of in vivo chromium-enhanced MRI of retinal lipids by determining its spatiotemporal profiles and toxic effect after intravitreal Cr(VI) injection to normal adult rats. One day after 3 µL Cr(VI) administration at 1-100 mM, the retina exhibited a dose-dependent increase in T1-weighted hyperintensity until 50 mM. Time-dependently, significant T1-weighted hyperintensity persisted up to 2 weeks after 10 mM Cr(VI) administration. Three-dimensional chromium-enhanced MRI of ex vivo normal eyes at isotropic 50-µm resolution showed at least five alternating bands across retinal layers, with the outermost layer being the brightest. This agreed with histology indicating alternating lipid contents with the highest level in the photoreceptor layer of the outer retina. Although Cr(VI) reduction may induce oxidative stress and depolymerize microtubules, manganese-enhanced MRI after chromium-enhanced MRI showed a dose-dependent effect of Cr toxicity on manganese uptake and axonal transport along the visual pathway. These results potentiated future longitudinal chromium-enhanced MRI studies on retinal lipid metabolism upon further optimization of Cr doses with visual cell viability.


Asunto(s)
Cromo/farmacocinética , Metabolismo de los Lípidos/fisiología , Imagen por Resonancia Magnética/métodos , Retina/anatomía & histología , Retina/metabolismo , Retinoscopía/métodos , Animales , Cromo/efectos adversos , Medios de Contraste/efectos adversos , Relación Dosis-Respuesta a Droga , Aumento de la Imagen/métodos , Imagen Molecular/métodos , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Retina/efectos de los fármacos , Sensibilidad y Especificidad
14.
J Magn Reson Imaging ; 36(1): 152-8, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22334510

RESUMEN

PURPOSE: To characterize changes in relaxation times of liver using quantitative magnetic resonance imaging (MRI) in an experimental mouse model of liver fibrosis. Quantitative MRI is a potentially robust method to characterize liver fibrosis. However, correlation between relaxation times and fibrosis stage has been controversial. MATERIALS AND METHODS: Liver fibrosis was induced in male adult C57BL/6N mice (22-25 g; n = 12) by repetitive dosing of carbon tetrachloride (CCl(4) ). The animals were examined with a series of spin-echo (SE) images with varying TRs and multiecho SE imaging sequence at 7 T before and 2, 4, 6, and 8 weeks after CCl(4) insult. Hepatic T(1) and T(2) values were measured. Histology was performed with hematoxylin-eosin staining and Masson's trichrome staining. RESULTS: Significant increase (P < 0.001) in hepatic T(1) was found at 2, 4, 6, and 8 weeks following CCl(4) insult as compared with that before insult. Meanwhile, hepatic T(2) at 2, 4, 6, and 8 weeks after CCl(4) insult was significantly higher (P < 0.001) than that before the insult. Liver histology showed collagen deposition, edema, and infiltration of inflammatory cells in livers with CCl(4) insult. CONCLUSION: Both longitudinal and transverse relaxation times may serve as robust markers for liver fibrosis. With the advent of single breath-hold sequences for MR relaxometry, quantitative mapping of relaxation times can be routinely and reliably performed in abdominal organs and hence may be valuable and robust in detecting liver fibrosis at early phase and monitoring its progression.


Asunto(s)
Algoritmos , Modelos Animales de Enfermedad , Interpretación de Imagen Asistida por Computador/métodos , Cirrosis Hepática/patología , Imagen por Resonancia Magnética/métodos , Animales , Humanos , Aumento de la Imagen/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
15.
J Magn Reson Imaging ; 36(1): 159-67, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22334528

RESUMEN

PURPOSE: To characterize longitudinal changes in molecular water diffusion, blood microcirculation, and their contributions to the apparent diffusion changes using intravoxel incoherent motion (IVIM) analysis in an experimental mouse model of liver fibrosis. MATERIALS AND METHODS: Liver fibrosis was induced in male adult C57BL/6N mice (22-25 g; n = 12) by repetitive dosing of carbon tetrachloride (CCl(4) ). The respiratory-gated diffusion-weighted (DW) images were acquired using single-shot spin-echo EPI (SE-EPI) with 8 b-values and single diffusion gradient direction. True diffusion coefficient (D(true) ), blood pseudodiffusion coefficient (D(pseudo) ), and perfusion fraction (P(fraction) ) were measured. Diffusion tensor imaging (DTI) was also performed for comparison. Histology was performed with hematoxylin-eosin and Masson's trichrome staining. RESULTS: A significant decrease in D(true) was found at 2 weeks and 4 weeks following CCl(4) insult, as compared with that before insult. Similarly, D(pseudo) values before injury was significantly higher than those at 2 weeks and 4 weeks after CCl(4) insult. Meanwhile, P(fraction) values showed no significant differences over different timepoints. For DTI, significant decrease in ADC was observed following CCl(4) administration. Fractional anisotropy at 2 weeks after CCl(4) insult was significantly lower than that before insult, and subsequently normalized at 4 weeks after the insult. Liver histology showed collagen deposition, the presence of intracellular fat vacuoles, and cell necrosis/apoptosis in livers with CCl(4) insult. CONCLUSION: Both molecular water diffusion and blood microcirculation contribute to the alteration in apparent diffusion changes in liver fibrosis. Reduction in D(true) and D(pseudo) values resulted from diffusion and perfusion changes, respectively, during the progression of liver fibrosis. IVIM analysis may serve as valuable and robust tool in detecting and characterizing liver fibrosis at early stages, monitoring its progression in a noninvasive manner.


Asunto(s)
Agua Corporal/metabolismo , Interpretación de Imagen Asistida por Computador/métodos , Almacenamiento y Recuperación de la Información/métodos , Circulación Hepática , Cirrosis Hepática/patología , Cirrosis Hepática/fisiopatología , Imagen por Resonancia Magnética/métodos , Algoritmos , Animales , Velocidad del Flujo Sanguíneo , Aumento de la Imagen/métodos , Imagenología Tridimensional/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Movimiento (Física) , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
16.
World J Clin Cases ; 9(2): 436-444, 2021 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-33521113

RESUMEN

BACKGROUND: Isovaleric acidemia (IVA) is a rare autosomal recessive inherited organic acidemia caused by a genetic deficiency of isovaleryl-CoA dehydrogenase (IVD). Its morbidity is low, but mortality is high. There is no effective cure for this disease. Early identification of IVA using clinical features can significantly slow disease progression and reduce mortality. Here we report a Chinese neonate with two mutations of IVD and share valuable information on this disease. CASE SUMMARY: A 12-day-old male neonate with "poor response for 1 d and repeated convulsions accompanied by high muscle tension for 6 h" was hospitalized. The patient was the first child of nonconsanguineous ethnic Chinese parents. He was delivered by cesarean section due to breech position at 39 + 1 wk of gestation with a birth weight of 3.27 kg. Initially, he suffered from dyspnea and rhinobyon, and at 10 d after birth the patient suddenly developed poor feeding, low response, lethargy and seizures. Organic acid analysis of blood and urine by tandem mass spectrometry and gas chromatography mass spectrometry showed extremely high concentrations of isovaleryl glycine. The patient had an acute episode of IVA causing severe metabolic stress and eventually died. CONCLUSION: A new case of an IVA patient carrying c.1193G>A (p.Arg398Gln) and c.1208A>G (p.Try403Cys) mutations is reported in China.

17.
NMR Biomed ; 23(5): 496-502, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20175152

RESUMEN

Renal ischemia reperfusion injury (IRI) is a major cause of acute renal failure. It occurs in various clinical settings such as renal transplantation, shock and vascular surgery. Serum creatinine level has been used as an index for estimating the degree of renal functional loss in renal IRI. However, it only evaluates the global renal function. In this study, diffusion tensor imaging (DTI) was used to characterize renal IRI in an experimental rat model. Spin-echo echo-planar DTI with b-value of 300 s/mm(2) and 6 diffusion gradient directions was performed at 7 T in 8 Sprague-Dawley (SD) with 60-min unilateral renal IRI and 8 normal SD rats. Apparent diffusion coefficient (ADC), directional diffusivities and fractional anisotropy (FA) were measured at the acute stage of IRI. The IR-injured animals were also examined by diffusion-weighted imaging with 7 b-values up to 1000 s/mm(2) to estimate true diffusion coefficient (D(true)) and perfusion fraction (P(fraction)) using a bi-compartmental model. ADC of injured renal cortex (1.69 +/- 0.24 x 10(-3) mm(2)/s) was significantly lower (p < 0.01) than that of contralateral intact cortex (2.03 +/- 0.35 x 10(-3) mm(2)/s). Meanwhile, both ADC and FA of IR-injured medulla (1.37 +/- 0.27 x 10(-3) mm(2)/s and 0.28 +/- 0.04, respectively) were significantly less (p < 0.01) than those of contralateral intact medulla (2.01 +/- 0.38 x 10(-3) mm(2)/s and 0.36 +/- 0.04, respectively). The bi-compartmental model analysis revealed the decrease in D(true) and P(fraction) in the IR-injured kidneys. Kidney histology showed widespread cell swelling and erythrocyte congestion in both cortex and medulla, and cell necrosis/apoptosis and cast formation in medulla. These experimental findings demonstrated that DTI can probe both structural and functional information of kidneys following renal IRI.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Riñón/patología , Daño por Reperfusión/patología , Animales , Anisotropía , Difusión , Modelos Animales de Enfermedad , Corteza Renal/patología , Ratas , Ratas Sprague-Dawley , Coloración y Etiquetado
18.
J Magn Reson Imaging ; 32(5): 1141-8, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21031520

RESUMEN

PURPOSE: To characterize changes in diffusion properties of liver using diffusion tensor imaging (DTI) in an experimental model of liver fibrosis. MATERIALS AND METHODS: Liver fibrosis was induced in Sprague-Dawley rats (n = 12) by repetitive dosing of carbon tetrachloride (CCl(4)). The animals were examined with a respiratory-gated single-shot spin-echo echo-planar DTI protocol at 7 T before, 2 weeks after, and 4 weeks after CCl(4) insult. Apparent diffusion coefficient (ADC), directional diffusivities (ADC(//) and ADC(⊥)), and fractional anisotropy (FA) were measured. Liver histology was performed with hematoxylin-eosin staining and Masson's trichrome staining. RESULTS: Significant decrease (P < 0.01) in ADC was found at 2 weeks (0.86 ± 0.09 × 10(-3) mm(2)/s) and 4 weeks (0.74 ± 0.09 × 10(-3) mm(2)/s) following CCl(4) insult, as compared with that before insult (0.97 ± 0.08 × 10(-3) mm(2)/s). Meanwhile, FA at 2 weeks (0.18 ± 0.03) after CCl(4) insult was significantly lower (P < 0.01) than that before insult (0.26 ± 0.05), and subsequently normalized at 4 weeks (0.26 ± 0.07) after the insult. Histology showed collagen deposition, presence of intracellular fat vacuoles, and cell necrosis/apoptosis in livers with CCl(4) insult. CONCLUSION: DTI detected the progressive changes in water diffusivities and diffusion anisotropy of liver tissue in this liver fibrosis model. ADC and FA are potentially valuable in detecting liver fibrosis at early stages and monitoring its progression. Future human studies are warranted to further verify the applicability of DTI in characterizing liver fibrosis and to determine its role in clinical settings.


Asunto(s)
Imagen de Difusión Tensora , Cirrosis Hepática Experimental/diagnóstico , Animales , Tetracloruro de Carbono , Hígado/patología , Cirrosis Hepática Experimental/inducido químicamente , Masculino , Ratas , Ratas Sprague-Dawley
19.
Sci Rep ; 10(1): 20601, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33244020

RESUMEN

Our previous studies have shown that sulbactam can play a neuroprotection role in hippocampal neurons by upregulating the expression and function of glial glutamate transporter-1 (GLT-1) during ischemic insult. Here, using rat global cerebral ischemia model, we studied in vivo the role of p38 mitogen-activated protein kinases (MAPK) in the sulbactam-induced GLT-1 upregulation and neuroprotection against ischemia. The hippocampal CA1 field was selected as observing target. The expressions of phosphorylated-p38 MAPK and GLT-1 were assayed with western blot analysis and immunohistochemistry. The condition of delayed neuronal death (DND) was assayed with neuropathological evaluation under thionin staining. It was shown that administration of sulbactam protected CA1 hippocampal neurons against ischemic insult accompanied with significantly upregulation in the expressions of phosphorylated-p38 MAPK and GLT-1. The time course analysis showed that sulbactam activated p38 MAPK before the GLT-1 upregulation in either normal or global cerebral ischemic rats. Furthermore, inhibiting p38 MAPK activation by SB203580 blocked the GLT-1 upregulation and neuroprotection induced by sulbactam. The above results suggested that p38 MAPK, at least partly, participated in the sulbactam-induced brain tolerance to ischemia mediated by GLT-1 upregulation in rats.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Transportador 2 de Aminoácidos Excitadores/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Sulbactam/uso terapéutico , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Activación Enzimática/efectos de los fármacos , Transportador 2 de Aminoácidos Excitadores/análisis , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Wistar , Sulbactam/farmacología , Regulación hacia Arriba/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/análisis
20.
Pharmacol Biochem Behav ; 184: 172742, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31348944

RESUMEN

Ketamine has become increasingly popular in adolescent drug abusers worldwide. Meanwhile, alcohol is usually used by ketamine users. However, little work has been conducted to examine the chronic combined effects of ketamine and ethanol on adolescent brain. Here we probed into the effects of chronic administration of ketamine at recreational doses alone or combined with ethanol on behaviors and neuron damage in an adolescent rat model. 28-day old rats were treated with either 20 or 30 mg/kg ketamine plus or not plus 10% ethanol daily for 21 days. Depressive like behaviors, anxiety like behavior and memory impairment were tested using open field test, forced swimming test, elevated plus maze and Morris water maze. Apoptosis in prefrontal cortex (PFC) and hippocampus (HIP) were determined by the TdT-mediated dUTP Nick-End Labeling (TUNEL) and protein and mRNA levels of caspase-3, Bax and Bcl-2. Results show that co-application of ketamine and ethanol significantly increased immobility time in the forced swimming test, up-regulated TUNEL positive cells and both protein and mRNA expressions of caspase-3 and Bax, compared with the control group and ketamine and ethanol use alone groups in the PFC, but not in the HIP. Our study suggests that chronic co-administration of ketamine and ethanol results in depressive-like behavior and the caspase-dependent apoptosis in the PFC of adolescent rats' brains.


Asunto(s)
Anestésicos Disociativos/farmacología , Apoptosis/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Hipocampo/efectos de los fármacos , Ketamina/farmacología , Corteza Prefrontal/efectos de los fármacos , Anestésicos Disociativos/administración & dosificación , Animales , Ansiedad/inducido químicamente , Caspasa 3/genética , Caspasa 3/metabolismo , Depresores del Sistema Nervioso Central/administración & dosificación , Depresión/inducido químicamente , Etanol/administración & dosificación , Hipocampo/metabolismo , Ketamina/administración & dosificación , Masculino , Memoria/efectos de los fármacos , Corteza Prefrontal/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Ratas Sprague-Dawley , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA