Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Pediatr ; 24(1): 468, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39039462

RESUMEN

BACKGROUND: Idiopathic short stature (ISS) is characterized by short stature with unknown causes. Recent studies showed different gut microbiota flora and reduced fecal short-chain fatty acids in ISS children. However, the roles of the microbiome and metabolites in the pathogenesis of ISS remains largely unknown. METHODS: We recruited 51 Chinese subjects, comprising 26 ISS children and 25 normal-height control individuals. Untargeted metabolomics was performed to explore the fecal metabolic profiles between groups. A shotgun metagenomic sequencing approach was used to investigate the microbiome at the strains level. Mediation analyses were done to reveal correlations between the height standard deviation (SD) value, the gut microbiome and metabolites. RESULTS: We detected marked differences in the composition of fecal metabolites in the ISS group, particularly a significant increase in erucic acid and a decrease in spermidine, adenosine and L-5-Hydroxytryptophan, when compared to those of controls. We further identified specific groups of bacterial strains to be associated with the different metabolic profile. Through mediation analysis, 50 linkages were established. KEGG pathway analysis of microbiota and metabolites indicated nutritional disturbances. 13 selected features were able to accurately distinguish the ISS children from the controls (AUC = 0.933 [95%CI, 79.9-100%]) by receiver operating characteristic (ROC) analysis. CONCLUSION: Our study suggests that the microbiome and the microbial-derived metabolites play certain roles in children's growth. These findings provide a new research direction for better understanding the mechanism(s) underlying ISS.


Asunto(s)
Heces , Microbioma Gastrointestinal , Humanos , Niño , Masculino , Femenino , Heces/microbiología , Estudios de Casos y Controles , Adolescente , Estatura , Trastornos del Crecimiento/microbiología , Trastornos del Crecimiento/metabolismo , Metabolómica/métodos , Metaboloma
2.
Hum Mutat ; 41(5): 1012-1024, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31981384

RESUMEN

Haploinsufficiency of ARID1B (AT-rich interaction domain 1B) has been involved in autism spectrum disorder, nonsyndromic and syndromic intellectual disability, and corpus callosum agenesis. Growth impairment is a major clinical feature caused by ARID1B mutations; however, the mechanistic link has not been elucidated. Here, we confirm that growth delay is a common characteristic of patients with ARID1B mutations, which may be associated with dysregulation of the Wnt/ß-catenin signaling pathway. An analysis of patients harboring pathogenic variants of ARID1B revealed that nearly half had short stature and nearly all had below-average height. Moreover, the percentage of patients with short stature increased with age. Knockdown of arid1b in zebrafish embryos markedly reduced body length and perturbed the expression of both chondrogenic and osteogenic genes including sox9a, col2a1a, runx2b, and col10a1. Knockout of Arid1b in chondrogenic ATDC5 cells inhibited chondrocyte proliferation and differentiation. Finally, Wnt/ß-catenin signaling was perturbed in Arid1b-depleted zebrafish embryos and Arid1b knockout ATDC5 cells. These data indicate that ARID1B modulates bone growth possibly via regulation of the Wnt/ß-catenin pathway, and may be an appropriate target for gene therapy in disorders of growth and development.


Asunto(s)
Proteínas de Unión al ADN/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Trastornos del Crecimiento/diagnóstico , Trastornos del Crecimiento/genética , Mutación , Factores de Transcripción/genética , Vía de Señalización Wnt , Alelos , Animales , Animales Modificados Genéticamente , Pesos y Medidas Corporales , Diferenciación Celular/genética , Preescolar , Proteínas de Unión al ADN/metabolismo , Facies , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Estudios de Asociación Genética/métodos , Genotipo , Gráficos de Crecimiento , Trastornos del Crecimiento/metabolismo , Humanos , Mutación con Pérdida de Función , Masculino , Fenotipo , Factores de Transcripción/metabolismo , Pez Cebra
3.
Front Genet ; 15: 1364441, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933926

RESUMEN

Background: Short stature is one of the most prevalent endocrine disorders in children, and its genetic basis is a complex and actively researched subject. Currently, there is limited genetic research on exome sequencing for short stature, and more large-scale studies are necessary for further exploration. Methods: The retrospective study entailed investigation of 98 Chinese children with short statures (height SDS ≤ -2.5) of unknown etiologies recruited between 2017 and 2021. Whole-exome sequencing (WES) was performed on these patients to identify the potential genetic etiologies. The clinical data were reviewed retrospectively to assess the pathogenicity of the identified mutations. Additionally, 31 patients consented to and received recombinant human growth hormone (rhGH) therapy for 12 months. The short-term effects of rhGH treatment were evaluated across different etiologies of patients with short statures. Results: The WES results were used to identify 31 different variants in 18 genes among 24 (24.5%) patients. Individuals with more severe short statures were more likely to have underlying genetic etiologies. Short stature accompanied by other phenotypes had significantly higher diagnostic yields than simple severe short stature. The rhGH therapy demonstrated efficacy in most children. Nevertheless, the treatment response was suboptimal in a boy diagnosed with 3M syndrome. Conclusion: WES is an important approach for confirming genetic disorders in patients with severe short statures of unknown etiologies, suggesting that it could be used as a primary diagnostic strategy. The administration of rhGH may not be suitable for all children with short statures, and the identification of the genetic cause of short stature by WES has significant guidance value for rhGH treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA