Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 49(6): 3304-13, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25700153

RESUMEN

Ship emissions degrade air quality and affect human health, and are increasingly becoming a matter of concern. Sulfur emission control areas (ECA), specific coastal regions where only low-sulfur fuels may be consumed by ocean-going ships, have proven to be useful tools to reduce ship-sourced air pollution along the North American, Canadian, and European North and Baltic Sea coastlines. The present work assesses the environmental and health benefits which would derive from designating an ECA in the Marmara Sea and the Turkish Straits (50 000 ships/year; 23 million inhabitants). Results show evidence that implementing an ECA would be technically viable and that it would reduce ship-sourced PM10 and PM2.5 ambient concentrations in Istanbul by 67%, and SO2 by 90%. The reduction of the air pollution burden on health was quantified as 210 hospital admissions from exposure to PM10, 290 hospital admissions from exposure to SO2, and up to 30 premature deaths annually due to ECA emission controls. Consequently, the designation of an ECA in the Marmara Sea and the Turkish Straits is evaluated as a positive, technically viable and real-world measure to reduce air pollution from ships in Turkey.


Asunto(s)
Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Navíos , Dióxido de Azufre/análisis , Emisiones de Vehículos/análisis , Enfermedades Cardiovasculares/mortalidad , Hospitalización/estadística & datos numéricos , Humanos , Modelos Teóricos , Océanos y Mares , Enfermedades Respiratorias/mortalidad , Turquía
2.
Environ Int ; 138: 105670, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32203802

RESUMEN

Ship traffic emissions degrade air quality in coastal areas and contribute to climate impacts globally. The estimated health burden of exposure to shipping emissions in coastal areas may inform policy makers as they seek to reduce exposure and associated potential health impacts. This work estimates the PM2.5-attributable impacts in the form of premature mortality and cardiovascular and respiratory hospital admissions, from long-term exposure to shipping emissions. Health impact assessment (HIA) was performed in 8 Mediterranean coastal cities, using a baseline conditions from the literature and a policy case accounting for the MARPOL Annex VI rules requiring cleaner fuels in 2020. Input data were (a) shipping contributions to ambient PM2.5 concentrations based on receptor modelling studies found in the literature, (b) population and health incidence data from national statistical registries, and (c) geographically-relevant concentration-response functions from the literature. Long-term exposure to ship-sourced PM2.5 accounted for 430 (95% CI: 220-650) premature deaths per year, in the 8 cities, distributed between groups of cities: Barcelona and Athens, with >100 premature deaths/year, and Nicosia, Brindisi, Genoa, Venice, Msida and Melilla, with tens of premature deaths/year. The more stringent standards in 2020 would reduce the number of PM2.5-attributable premature deaths by 15% on average. HIA provided a comparative assessment of the health burden of shipping emissions across Mediterranean coastal cities, which may provide decision support for urban planning with a special focus on harbour areas, and in view of the reduction in sulphur content of marine fuels due to MARPOL Annex VI in 2020.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/análisis , Ciudades , Humanos , Región Mediterránea , Material Particulado/análisis , Material Particulado/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA