Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(2): 105638, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199570

RESUMEN

The inflammasome is a large multiprotein complex that assembles in the cell cytoplasm in response to stress or pathogenic infection. Its primary function is to defend the cell and promote the secretion of pro-inflammatory cytokines, including IL-1ß and IL-18. Previous research has shown that in immortalized bone marrow-derived macrophages (iBMDMs) inflammasome assembly is dependent on the deacetylase HDAC6 and the aggresome processing pathway (APP), a cellular pathway involved in the disposal of misfolded proteins. Here we used primary BMDMs from mice in which HDAC6 is ablated or impaired and found that inflammasome activation was largely normal. We also used human peripheral blood mononuclear cells and monocyte cell lines expressing a synthetic protein blocking the HDAC6-ubiquitin interaction and impairing the APP and found that inflammasome activation was moderately affected. Finally, we used a novel HDAC6 degrader and showed that inflammasome activation was partially impaired in human macrophage cell lines with depleted HDAC6. Our results therefore show that HDAC6 importance in inflammasome activation is context-dependent.


Asunto(s)
Inflamasomas , Leucocitos Mononucleares , Animales , Humanos , Ratones , Línea Celular , Histona Desacetilasa 6/genética , Histona Desacetilasa 6/metabolismo , Inflamasomas/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Leucocitos Mononucleares/metabolismo , Macrófagos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transporte de Proteínas/fisiología
2.
Circulation ; 149(18): 1419-1434, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38357791

RESUMEN

BACKGROUND: Clonal hematopoiesis of indeterminate potential (CHIP), a common age-associated phenomenon, associates with increased risk of both hematological malignancy and cardiovascular disease. Although CHIP is known to increase the risk of myocardial infarction and heart failure, the influence of CHIP in cardiac arrhythmias, such as atrial fibrillation (AF), is less explored. METHODS: CHIP prevalence was determined in the UK Biobank, and incident AF analysis was stratified by CHIP status and clone size using Cox proportional hazard models. Lethally irradiated mice were transplanted with hematopoietic-specific loss of Tet2, hematopoietic-specific loss of Tet2 and Nlrp3, or wild-type control and fed a Western diet, compounded with or without NLRP3 (NLR [NACHT, LRR {leucine rich repeat}] family pyrin domain containing protein 3) inhibitor, NP3-361, for 6 to 9 weeks. Mice underwent in vivo invasive electrophysiology studies and ex vivo optical mapping. Cardiomyocytes from Ldlr-/- mice with hematopoietic-specific loss of Tet2 or wild-type control and fed a Western diet were isolated to evaluate calcium signaling dynamics and analysis. Cocultures of pluripotent stem cell-derived atrial cardiomyocytes were incubated with Tet2-deficient bone marrow-derived macrophages, wild-type control, or cytokines IL-1ß (interleukin 1ß) or IL-6 (interleukin 6). RESULTS: Analysis of the UK Biobank showed individuals with CHIP, in particular TET2 CHIP, have increased incident AF. Hematopoietic-specific inactivation of Tet2 increases AF propensity in atherogenic and nonatherogenic mouse models and is associated with increased Nlrp3 expression and CaMKII (Ca2+/calmodulin-dependent protein kinase II) activation, with AF susceptibility prevented by inactivation of Nlrp3. Cardiomyocytes isolated from Ldlr-/- mice with hematopoietic inactivation of Tet2 and fed a Western diet have impaired calcium release from the sarcoplasmic reticulum into the cytosol, contributing to atrial arrhythmogenesis. Abnormal sarcoplasmic reticulum calcium release was recapitulated in cocultures of cardiomyocytes with the addition of Tet2-deficient macrophages or cytokines IL-1ß or IL-6. CONCLUSIONS: We identified a modest association between CHIP, particularly TET2 CHIP, and incident AF in the UK Biobank population. In a mouse model of AF resulting from hematopoietic-specific inactivation of Tet2, we propose altered calcium handling as an arrhythmogenic mechanism, dependent on Nlrp3 inflammasome activation. Our data are in keeping with previous studies of CHIP in cardiovascular disease, and further studies into the therapeutic potential of NLRP3 inhibition for individuals with TET2 CHIP may be warranted.


Asunto(s)
Fibrilación Atrial , Hematopoyesis Clonal , Proteínas de Unión al ADN , Dioxigenasas , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Proteínas Proto-Oncogénicas , Animales , Dioxigenasas/metabolismo , Dioxigenasas/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Fibrilación Atrial/metabolismo , Fibrilación Atrial/etiología , Fibrilación Atrial/genética , Fibrilación Atrial/patología , Inflamasomas/metabolismo , Humanos , Ratones , Hematopoyesis Clonal/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Masculino , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Anciano , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Persona de Mediana Edad , Ratones Noqueados , Factores de Riesgo
3.
EMBO J ; 38(10)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30902848

RESUMEN

Pyroptosis is a form of lytic inflammatory cell death driven by inflammatory caspase-1, caspase-4, caspase-5 and caspase-11. These caspases cleave and activate the pore-forming protein gasdermin D (GSDMD) to induce membrane damage. By contrast, apoptosis is driven by apoptotic caspase-8 or caspase-9 and has traditionally been classified as an immunologically silent form of cell death. Emerging evidence suggests that therapeutics designed for cancer chemotherapy or inflammatory disorders such as SMAC mimetics, TAK1 inhibitors and BH3 mimetics promote caspase-8 or caspase-9-dependent inflammatory cell death and NLRP3 inflammasome activation. However, the mechanism by which caspase-8 or caspase-9 triggers cell lysis and NLRP3 activation is still undefined. Here, we demonstrate that during extrinsic apoptosis, caspase-1 and caspase-8 cleave GSDMD to promote lytic cell death. By engineering a novel Gsdmd D88A knock-in mouse, we further demonstrate that this proinflammatory function of caspase-8 is counteracted by caspase-3-dependent cleavage and inactivation of GSDMD at aspartate 88, and is essential to suppress GSDMD-dependent cell lysis during caspase-8-dependent apoptosis. Lastly, we provide evidence that channel-forming glycoprotein pannexin-1, but not GSDMD or GSDME promotes NLRP3 inflammasome activation during caspase-8 or caspase-9-dependent apoptosis.


Asunto(s)
Apoptosis/fisiología , Conexinas/fisiología , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas del Tejido Nervioso/fisiología , Células 3T3 , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Caspasas/metabolismo , Células Cultivadas , Embrión de Mamíferos , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Complejos Multiproteicos/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Unión Proteica , Multimerización de Proteína , Receptores de Estrógenos/metabolismo , Transducción de Señal/fisiología
4.
Biochem Biophys Res Commun ; 545: 177-182, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33561652

RESUMEN

The NLRP3 inflammasome is a critical component of the innate immune response to sterile inflammation. Its regulation involves a priming step, required for up-regulation of inflammasome protagonists and an activation step leading to NLRP3 inflammasome complex assembly, which triggers caspase-1 activity. The IκKß kinase regulates canonical NF-κB, a key pathway involved in transcriptional priming. We found that IκKß also regulates the activation and function of the NLRP3 inflammasome beyond the priming step. Two unrelated IκKß inhibitors, AFN700 and TPCA-1, when applied after priming, fully blocked IL-1ß secretion triggered by nigericin in THP-1 cells. Both inhibitors prevented neither inflammasome assembly, as monitored by measuring the formation of ASC specks, nor the generation of caspase-1 p20, a hallmark of caspase-1 activity, but they impaired the initial cleavage and activation of procaspase-1. These data thus indicate that IκKß activity is required for efficient activation of NLRP3, suggesting that IκKß may fulfill a dual role in coupling priming and activation of the NLRP3 inflammasome.


Asunto(s)
Quinasa I-kappa B/antagonistas & inhibidores , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Amidas/farmacología , Caspasa 1/metabolismo , Humanos , Inmunidad Innata/efectos de los fármacos , Inflamasomas/efectos de los fármacos , Inflamasomas/inmunología , Interleucina-1beta/biosíntesis , FN-kappa B/metabolismo , Nigericina/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Células THP-1 , Tiofenos/farmacología
5.
Blood ; 134(19): 1670-1682, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31533918

RESUMEN

Myeloid-derived suppressor cells (MDSCs) can subdue inflammation. In mice with acute graft-versus-host disease (GVHD), donor MDSC infusion enhances survival that is only partial and transient because of MDSC inflammasome activation early posttransfer, resulting in differentiation and loss of suppressor function. Here we demonstrate that conditioning regimen-induced adenosine triphosphate (ATP) release is a primary driver of MDSC dysfunction through ATP receptor (P2x7R) engagement and NLR pyrin family domain 3 (NLRP3) inflammasome activation. P2x7R or NLRP3 knockout (KO) donor MDSCs provided significantly higher survival than wild-type (WT) MDSCs. Although in vivo pharmacologic targeting of NLRP3 or P2x7R promoted recipient survival, indicating in vivo biologic effects, no synergistic survival advantage was seen when combined with MDSCs. Because activated inflammasomes release mature interleukin-1ß (IL-1ß), we expected that IL-1ß KO donor MDSCs would be superior in subverting GVHD, but such MDSCs proved inferior relative to WT. IL-1ß release and IL-1 receptor expression was required for optimal MDSC function, and exogenous IL-1ß added to suppression assays that included MDSCs increased suppressor potency. These data indicate that prolonged systemic NLRP3 inflammasome inhibition and decreased IL-1ß could diminish survival in GVHD. However, loss of inflammasome activation and IL-1ß release restricted to MDSCs rather than systemic inhibition allowed non-MDSC IL-1ß signaling, improving survival. Extracellular ATP catalysis with peritransplant apyrase administered into the peritoneum, the ATP release site, synergized with WT MDSCs, as did regulatory T-cell infusion, which we showed reduced but did not eliminate MDSC inflammasome activation, as assessed with a novel inflammasome reporter strain. These findings will inform future clinical using MDSCs to decrease alloresponses in inflammatory environments.


Asunto(s)
Adenosina Trifosfato/metabolismo , Enfermedad Injerto contra Huésped/inmunología , Inflamasomas/inmunología , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/trasplante , Animales , Femenino , Ratones , Ratones Noqueados
6.
EMBO J ; 35(16): 1766-78, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27418190

RESUMEN

Pyroptosis is a lytic type of cell death that is initiated by inflammatory caspases. These caspases are activated within multi-protein inflammasome complexes that assemble in response to pathogens and endogenous danger signals. Pyroptotic cell death has been proposed to proceed via the formation of a plasma membrane pore, but the underlying molecular mechanism has remained unclear. Recently, gasdermin D (GSDMD), a member of the ill-characterized gasdermin protein family, was identified as a caspase substrate and an essential mediator of pyroptosis. GSDMD is thus a candidate for pyroptotic pore formation. Here, we characterize GSDMD function in live cells and in vitro We show that the N-terminal fragment of caspase-1-cleaved GSDMD rapidly targets the membrane fraction of macrophages and that it induces the formation of a plasma membrane pore. In vitro, the N-terminal fragment of caspase-1-cleaved recombinant GSDMD tightly binds liposomes and forms large permeability pores. Visualization of liposome-inserted GSDMD at nanometer resolution by cryo-electron and atomic force microscopy shows circular pores with variable ring diameters around 20 nm. Overall, these data demonstrate that GSDMD is the direct and final executor of pyroptotic cell death.


Asunto(s)
Caspasa 1/metabolismo , Membrana Celular/metabolismo , Proteínas de Neoplasias/metabolismo , Piroptosis , Línea Celular , Microscopía por Crioelectrón , Humanos , Péptidos y Proteínas de Señalización Intracelular , Liposomas/química , Liposomas/ultraestructura , Microscopía de Fuerza Atómica , Permeabilidad , Proteínas de Unión a Fosfato
7.
Biotechnol Bioeng ; 115(10): 2530-2540, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29777593

RESUMEN

An increasing number of nonantibody format proteins are entering clinical development. However, one of the major hurdles for the production of nonantibody glycoproteins is host cell-related proteolytic degradation, which can drastically impact developability and timelines of pipeline projects. Chinese hamster ovary (CHO) cells are the preferred production host for recombinant therapeutic proteins. Using protease inhibitors, transcriptomics, and genetic knockdowns, we have identified, out of the >700 known proteases in rodents, matriptase-1 as the major protease involved in the degradation of recombinant proteins expressed in CHO-K1 cells. Subsequently, matriptase-1 was deleted in CHO-K1 cells using "transcription activator-like effector nucleases" (TALENs) as well as zinc-finger nucleases (ZFNs). This resulted in a superior CHO-K1 matriptase (KO) cell line with strongly reduced or no proteolytic degradation activity toward a panel of recombinantly expressed proteins. The matriptase KO cell line was evaluated in spike-in experiments and showed little or no degradation of proteins incubated in culture supernatant derived from the KO cells. This effect was confirmed when the same proteins were recombinantly expressed in the KO cell line. In summary, the combination of novel cell line engineering tools, next-generation sequencing screening methods, and the recently published Chinese hamster genome has enabled the development of this novel matriptase KO CHO cell line capable of improving expression yields of intact therapeutic proteins.


Asunto(s)
Ingeniería Celular/métodos , Técnicas de Silenciamiento del Gen/métodos , Proteolisis , Serina Endopeptidasas/genética , Animales , Células CHO , Cricetinae , Cricetulus , Humanos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Serina Endopeptidasas/metabolismo
8.
Bioorg Med Chem Lett ; 28(5): 906-909, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29433930
9.
J Med Chem ; 67(2): 1544-1562, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38175811

RESUMEN

NLRP3 is a molecular sensor recognizing a wide range of danger signals. Its activation leads to the assembly of an inflammasome that allows for activation of caspase-1 and subsequent maturation of IL-1ß and IL-18, as well as cleavage of Gasdermin-d and pyroptotic cell death. The NLRP3 inflammasome has been implicated in a plethora of diseases including gout, type 2 diabetes, atherosclerosis, Alzheimer's disease, and cancer. In this publication, we describe the discovery of a novel, tricyclic, NLRP3-binding scaffold by high-throughput screening. The hit (1) could be optimized into an advanced compound NP3-562 demonstrating excellent potency in human whole blood and full inhibition of IL-1ß release in a mouse acute peritonitis model at 30 mg/kg po dose. An X-ray structure of NP3-562 bound to the NLRP3 NACHT domain revealed a unique binding mode as compared to the known sulfonylurea-based inhibitors. In addition, NP3-562 shows also a good overall development profile.


Asunto(s)
Diabetes Mellitus Tipo 2 , Gota , Ratones , Animales , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Macrófagos/metabolismo , Interleucina-1beta/metabolismo , Caspasa 1/metabolismo
10.
Blood Adv ; 8(5): 1234-1249, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38207211

RESUMEN

ABSTRACT: JAK 2-V617F is the most frequent somatic mutation causing myeloproliferative neoplasm (MPN). JAK2-V617F can be found in healthy individuals with clonal hematopoiesis of indeterminate potential (CHIP) with a frequency much higher than the prevalence of MPNs. The factors controlling the conversion of JAK2-V617F CHIP to MPN are largely unknown. We hypothesized that interleukin-1ß (IL-1ß)-mediated inflammation can favor this progression. We established an experimental system using bone marrow (BM) transplantations from JAK2-V617F and GFP transgenic (VF;GFP) mice that were further crossed with IL-1ß-/- or IL-1R1-/- mice. To study the role of IL-1ß and its receptor on monoclonal evolution of MPN, we performed competitive BM transplantations at high dilutions with only 1 to 3 hematopoietic stem cells (HSCs) per recipient. Loss of IL-1ß in JAK2-mutant HSCs reduced engraftment, restricted clonal expansion, lowered the total numbers of functional HSCs, and decreased the rate of conversion to MPN. Loss of IL-1R1 in the recipients also lowered the conversion to MPN but did not reduce the frequency of engraftment of JAK2-mutant HSCs. Wild-type (WT) recipients transplanted with VF;GFP BM that developed MPNs had elevated IL-1ß levels and reduced frequencies of mesenchymal stromal cells (MSCs). Interestingly, frequencies of MSCs were also reduced in recipients that did not develop MPNs, had only marginally elevated IL-1ß levels, and displayed low GFP-chimerism resembling CHIP. Anti-IL-1ß antibody preserved high frequencies of MSCs in VF;GFP recipients and reduced the rate of engraftment and the conversion to MPN. Our results identify IL-1ß as a potential therapeutic target for preventing the transition from JAK2-V617F CHIP to MPNs.


Asunto(s)
Trastornos Mieloproliferativos , Animales , Ratones , Animales Modificados Genéticamente , Trasplante de Médula Ósea , Células Madre Hematopoyéticas , Interleucina-1beta , Trastornos Mieloproliferativos/genética
11.
bioRxiv ; 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37645730

RESUMEN

The inflammasome is a large multiprotein complex that assembles in the cell cytoplasm in response to stress or pathogenic infection. Its primary function is to defend the cell and promote the secretion of pro-inflammatory cytokines, including IL-1ß and IL-18. It was shown that in immortalized bone marrow derived macrophages (iBMDMs) inflammasome assembly is dependent on the deacetylase HDAC6 and the aggresome processing pathway (APP), a cellular pathway involved in the disposal of misfolded proteins. Here we used primary BMDMs from mice in which HDAC6 is ablated or impaired and found that inflammasome activation was largely normal. We also used human peripheral blood mononuclear cells and monocytes cell lines expressing a synthetic protein blocking HDAC6-ubiquitin interaction and impairing the APP and found that inflammasome activation was moderately affected. Finally, we used a novel HDAC6 degrader and showed that inflammasome activation was partially impaired in human macrophage cell lines with depleted HDAC6. Our results therefore show that HDAC6 importance in inflammasome activation is context dependent.

12.
Sci Signal ; 16(768): eabh1083, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36649377

RESUMEN

Inflammasomes are intracellular protein complexes that promote an inflammatory host defense in response to pathogens and damaged or neoplastic tissues and are implicated in inflammatory disorders and therapeutic-induced toxicity. We investigated the mechanisms of activation for inflammasomes nucleated by NOD-like receptor (NLR) protiens. A screen of a small-molecule library revealed that several tyrosine kinase inhibitors (TKIs)-including those that are clinically approved (such as imatinib and crizotinib) or are in clinical trials (such as masitinib)-activated the NLRP3 inflammasome. Furthermore, imatinib and masitinib caused lysosomal swelling and damage independently of their kinase target, leading to cathepsin-mediated destabilization of myeloid cell membranes and, ultimately, cell lysis that was accompanied by potassium (K+) efflux, which activated NLRP3. This effect was specific to primary myeloid cells (such as peripheral blood mononuclear cells and mouse bone marrow-derived dendritic cells) and did not occur in other primary cell types or various cell lines. TKI-induced lytic cell death and NLRP3 activation, but not lysosomal damage, were prevented by stabilizing cell membranes. Our findings reveal a potential immunological off-target of some TKIs that may contribute to their clinical efficacy or to their adverse effects.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Mesilato de Imatinib , Leucocitos Mononucleares/metabolismo , Muerte Celular , Células Mieloides/metabolismo , Interleucina-1beta/metabolismo
13.
Nat Commun ; 13(1): 5346, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36100613

RESUMEN

Interleukin-1ß (IL-1ß) is a master regulator of inflammation. Increased activity of IL-1ß has been implicated in various pathological conditions including myeloproliferative neoplasms (MPNs). Here we show that IL-1ß serum levels and expression of IL-1 receptors on hematopoietic progenitors and stem cells correlate with JAK2-V617F mutant allele fraction in peripheral blood of patients with MPN. We show that the source of IL-1ß overproduction in a mouse model of MPN are JAK2-V617F expressing hematopoietic cells. Knockout of IL-1ß in hematopoietic cells of JAK2-V617F mice reduces inflammatory cytokines, prevents damage to nestin-positive niche cells and reduces megakaryopoiesis, resulting in decrease of myelofibrosis and osteosclerosis. Inhibition of IL-1ß in JAK2-V617F mutant mice by anti-IL-1ß antibody also reduces myelofibrosis and osteosclerosis and shows additive effects with ruxolitinib. These results suggest that inhibition of IL-1ß with anti-IL-1ß antibody alone or in combination with ruxolitinib could have beneficial effects on the clinical course in patients with myelofibrosis.


Asunto(s)
Interleucina-1beta/metabolismo , Janus Quinasa 2/genética , Trastornos Mieloproliferativos , Neoplasias , Osteosclerosis , Mielofibrosis Primaria , Animales , Janus Quinasa 2/metabolismo , Ratones , Ratones Noqueados , Trastornos Mieloproliferativos/tratamiento farmacológico , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/metabolismo , Nitrilos , Osteosclerosis/genética , Mielofibrosis Primaria/tratamiento farmacológico , Mielofibrosis Primaria/genética , Pirazoles , Pirimidinas
14.
PLoS One ; 16(11): e0248668, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34767572

RESUMEN

BACKGROUND: The NLRP3 inflammasome is a critical component of sterile inflammation, which is involved in many diseases. However, there is currently no known proximal biomarker for measuring NLRP3 activation in pathological conditions. Protein kinase D (PKD) has emerged as an important NLRP3 kinase that catalyzes the release of a phosphorylated NLRP3 species that is competent for inflammasome complex assembly. METHODS: To explore the potential for PKD activation to serve as a selective biomarker of the NLRP3 pathway, we tested various stimulatory conditions in THP-1 and U937 cell lines, probing the inflammasome space beyond NLRP3. We analyzed the correlation between PKD activation (monitored by its auto-phosphorylation) and functional inflammasome readouts. RESULTS: PKD activation/auto-phosphorylation always preceded cleavage of caspase-1 and gasdermin D, and treatment with the PKD inhibitor CRT0066101 could block NLRP3 inflammasome assembly and interleukin-1ß production. Conversely, blocking NLRP3 either genetically or using the MCC950 inhibitor prevented PKD auto-phosphorylation, indicating a bidirectional functional crosstalk between NLRP3 and PKD. Further assessments of the pyrin and NLRC4 pathways, however, revealed that PKD auto-phosphorylation can be triggered by a broad range of stimuli unrelated to NLRP3 inflammasome assembly. CONCLUSION: Although PKD and NLRP3 become functionally interconnected during NLRP3 activation, the promiscuous reactivity of PKD challenges its potential use for tracing the NLRP3 inflammasome pathway.


Asunto(s)
Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína Quinasa C/metabolismo , Biomarcadores/metabolismo , Caspasa 1/metabolismo , Línea Celular Tumoral , Humanos , Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Fosforilación , Pirina/metabolismo , Células U937
15.
J Mol Biol ; 433(24): 167309, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34687713

RESUMEN

The NLRP3 inflammasome assembles in response to a variety of pathogenic and sterile danger signals, resulting in the production of interleukin-1ß and interleukin-18. NLRP3 is a key component of the innate immune system and has been implicated as a driver of a number of acute and chronic diseases. We report the 2.8 Å crystal structure of the NLRP3 NACHT domain in complex with an inhibitor. The structure defines a binding pocket formed by the four subdomains of the NACHT domain, and shows the inhibitor acts as an intramolecular glue, which locks the protein in an inactive conformation. It provides further molecular insight into our understanding of NLRP3 activation, helps to detail the residues involved in subdomain coordination within the NLRP3 NACHT domain, and gives molecular insights into how gain-of-function mutations de-stabilize the inactive conformation of NLRP3. Finally, it suggests stabilizing the auto-inhibited form of the NACHT domain is an effective way to inhibit NLRP3, and will aid the structure-based development of NLRP3 inhibitors for a range of inflammatory diseases.


Asunto(s)
Inflamasomas/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/química , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Furanos/química , Furanos/farmacología , Humanos , Indenos/química , Indenos/farmacología , Inflamasomas/metabolismo , Dominios Proteicos , Sulfonamidas/química , Sulfonamidas/farmacología
16.
J Biol Chem ; 284(38): 25697-703, 2009 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-19620707

RESUMEN

Cysteine proteases of the papain superfamily are implicated in a number of cellular processes and are important virulence factors in the pathogenesis of parasitic disease. These enzymes have therefore emerged as promising targets for antiparasitic drugs. We report the crystal structures of three major parasite cysteine proteases, cruzain, falcipain-3, and the first reported structure of rhodesain, in complex with a class of potent, small molecule, cysteine protease inhibitors, the vinyl sulfones. These data, in conjunction with comparative inhibition kinetics, provide insight into the molecular mechanisms that drive cysteine protease inhibition by vinyl sulfones, the binding specificity of these important proteases and the potential of vinyl sulfones as antiparasitic drugs.


Asunto(s)
Antiparasitarios/química , Cisteína Endopeptidasas/química , Plasmodium falciparum/enzimología , Inhibidores de Proteasas/química , Proteínas Protozoarias/química , Sulfonas/química , Trypanosoma brucei brucei/enzimología , Trypanosoma cruzi/enzimología , Animales , Antiparasitarios/uso terapéutico , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/enzimología , Cristalografía por Rayos X , Diseño de Fármacos , Cinética , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/enzimología , Inhibidores de Proteasas/uso terapéutico , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Protozoarias/antagonistas & inhibidores , Sulfonas/uso terapéutico , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/enzimología
17.
Bioorg Med Chem Lett ; 19(14): 3744-7, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19477127

RESUMEN

The high degree of specificity displayed by antibodies often results in varying potencies against antigen orthologs, which can affect the efficacy of these molecules in different animal models of disease. We have used a computational design strategy to improve the species cross-reactivity of an antibody-based inhibitor of the cancer-associated serine protease MT-SP1. In silico predictions were tested in vitro, and the most effective mutation, T98R, was shown to improve antibody affinity for the mouse ortholog of the enzyme 14-fold, resulting in an inhibitor with a K(I) of 340 pM. This improved affinity will be valuable when exploring the role of MT-SP1 in mouse models of cancer, and the strategy outlined here could be useful in fine-tuning antibody specificity.


Asunto(s)
Anticuerpos/química , Inhibidores de Serina Proteinasa/química , Sustitución de Aminoácidos , Animales , Anticuerpos/genética , Anticuerpos/inmunología , Biología Computacional , Reacciones Cruzadas , Diseño de Fármacos , Humanos , Proteínas de la Membrana , Ratones , Mutación , Ingeniería de Proteínas , Estructura Terciaria de Proteína , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Inhibidores de Serina Proteinasa/metabolismo , Especificidad de la Especie , Termodinámica
18.
J Mol Biol ; 369(4): 1041-51, 2007 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-17475279

RESUMEN

The mechanisms of inhibition of two novel scFv antibody inhibitors of the serine protease MT-SP1/matriptase reveal the basis of their potency and specificity. Kinetic experiments characterize the inhibitors as extremely potent inhibitors with K(I) values in the low picomolar range that compete with substrate binding in the S1 site. Alanine scanning of the loops surrounding the protease active site provides a rationale for inhibitor specificity. Each antibody binds to a number of residues flanking the active site, forming a unique three-dimensional binding epitope. Interestingly, one inhibitor binds in the active site cleft in a substrate-like manner, can be processed by MT-SP1 at low pH, and is a standard mechanism inhibitor of the protease. The mechanisms of inhibition provide a rationale for the effectiveness of these inhibitors, and suggest that the development of specific antibody-based inhibitors against individual members of closely related enzyme families is feasible, and an effective way to develop tools to tease apart complex biological processes.


Asunto(s)
Región Variable de Inmunoglobulina/metabolismo , Serina Endopeptidasas/metabolismo , Inhibidores de Serina Proteinasa/metabolismo , Animales , Epítopos , Humanos , Modelos Moleculares , Mutación Puntual , Estructura Terciaria de Proteína , Serina Endopeptidasas/química
19.
Neurosci Lett ; 660: 109-114, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28923481

RESUMEN

Triggering receptor expressed in myeloid cells (TREM2) is a member of the immunoglobulin superfamily and is expressed in macrophages, dendritic cells, microglia, and osteoclasts. TREM2 plays a role in phagocytosis, regulates release of cytokine, contributes to microglia maintenance, and its ectodomain is shed from the cell surface. Here, the question was addressed at which position sheddases cleave TREM2 and what are the proteases involved in this process. Using both pharmacological and genetic approaches we report that the main protease contributing to the release of TREM2 ectodomain is ADAM17, (a disintegrin and metalloproteinase domain containing protein, also called TACE, TNFα converting enzyme) while ADAM10 plays a minor role. Complementary biochemical experiments reveal that cleavage occurs between histidine 157 and serine 158. Shedding is not altered for the R47H-mutated TREM2 protein that confers an increased risk for the development of Alzheimers disease. These findings reveal a link between shedding of TREM2 and its regulation during inflammatory conditions or chronic neurodegenerative disease like AD in which activity or expression of sheddases might be altered.


Asunto(s)
Proteína ADAM17/metabolismo , Histidina/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo , Proteína ADAM10/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Células CHO , Línea Celular , Cricetulus , Humanos , Proteínas de la Membrana/metabolismo
20.
ChemMedChem ; 11(8): 862-9, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-26822284

RESUMEN

Fragment-based drug discovery has shown promise as an approach for challenging targets such as protein-protein interfaces. We developed and applied an activity-based fragment screen against dimeric Kaposi's sarcoma-associated herpesvirus protease (KSHV Pr) using an optimized fluorogenic substrate. Dose-response determination was performed as a confirmation screen, and NMR spectroscopy was used to map fragment inhibitor binding to KSHV Pr. Kinetic assays demonstrated that several initial hits also inhibit human cytomegalovirus protease (HCMV Pr). Binding of these hits to HCMV Pr was also confirmed by NMR spectroscopy. Despite the use of a target-agnostic fragment library, more than 80 % of confirmed hits disrupted dimerization and bound to a previously reported pocket at the dimer interface of KSHV Pr, not to the active site. One class of fragments, an aminothiazole scaffold, was further explored using commercially available analogues. These compounds demonstrated greater than 100-fold improvement of inhibition. This study illustrates the power of fragment-based screening for these challenging enzymatic targets and provides an example of the potential druggability of pockets at protein-protein interfaces.


Asunto(s)
Herpesvirus Humano 8/enzimología , Péptido Hidrolasas/metabolismo , Inhibidores de Proteasas/farmacología , Serina Endopeptidasas/metabolismo , Relación Dosis-Respuesta a Droga , Ensayos Analíticos de Alto Rendimiento , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/química , Unión Proteica/efectos de los fármacos , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA