Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Hepatol ; 78(5): 958-970, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36702177

RESUMEN

BACKGROUND & AIMS: Chronic coinfection with HBV and HDV leads to the most aggressive form of chronic viral hepatitis. Herein, we aimed to elucidate the molecular mechanisms underlying the widely reported observation that HDV interferes with HBV in most coinfected patients. METHODS: Patient liver tissues, primary human hepatocytes, HepaRG cells and human liver chimeric mice were used to analyze the effect of HDV on HBV using virological and RNA-sequencing analyses, as well as RNA synthesis, stability and association assays. RESULTS: Transcriptomic analyses in cell culture and mouse models of coinfection enabled us to define an HDV-induced signature, mainly composed of interferon (IFN)-stimulated genes (ISGs). We also provide evidence that ISGs are upregulated in chronically HDV/HBV-coinfected patients but not in cells that only express HDV antigen (HDAg). Inhibition of the hepatocyte IFN response partially rescued the levels of HBV parameters. We observed less HBV RNA synthesis upon HDV infection or HDV protein expression. Additionally, HDV infection or expression of HDAg alone specifically accelerated the decay of HBV RNA, and HDAg was associated with HBV RNAs. On the contrary, HDAg expression did not affect other viruses such as HCV or SARS-CoV-2. CONCLUSIONS: Our data indicate that HDV interferes with HBV through both IFN-dependent and IFN-independent mechanisms. Specifically, we uncover a new viral interference mechanism in which proteins of a satellite virus affect the RNA production of its helper virus. Exploiting these findings could pave the way to the development of new therapeutic strategies against HBV. IMPACT AND IMPLICATIONS: Although the molecular mechanisms remained unexplored, it has long been known that despite its dependency, HDV decreases HBV viremia in patients. Herein, using in vitro and in vivo models, we showed that HDV interferes with HBV through both IFN-dependent and IFN-independent mechanisms affecting HBV RNA metabolism, and we defined the HDV-induced modulation signature. The mechanisms we uncovered could pave the way for the development of new therapeutic strategies against HBV by mimicking and/or increasing the effect of HDAg on HBV RNA. Additionally, the HDV-induced modulation signature could potentially be correlated with responsiveness to IFN-α treatment, thereby helping to guide management of HBV/HDV-coinfected patients.


Asunto(s)
COVID-19 , Coinfección , Hepatitis B , Hepatitis D , Humanos , Ratones , Animales , Virus de la Hepatitis Delta/fisiología , Virus de la Hepatitis B/fisiología , Interferones , Antígenos de Hepatitis delta/metabolismo , Hepatitis D/complicaciones , Hepatitis B/complicaciones , Replicación Viral/fisiología , COVID-19/complicaciones , SARS-CoV-2/genética , ARN Viral/genética
2.
J Hepatol ; 72(5): 960-975, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31954207

RESUMEN

BACKGROUND & AIMS: Hepatic innate immune control of viral infections has largely been attributed to Kupffer cells, the liver-resident macrophages. However, hepatocytes, the parenchymal cells of the liver, also possess potent immunological functions in addition to their known metabolic functions. Owing to their abundance in the liver and known immunological functions, we aimed to investigate the direct antiviral mechanisms employed by hepatocytes. METHODS: Using lymphocytic choriomeningitis virus (LCMV) as a model of liver infection, we first assessed the role of myeloid cells by depletion prior to infection. We investigated the role of hepatocyte-intrinsic innate immune signaling by infecting mice lacking canonical NF-κB signaling (IkkßΔHep) specifically in hepatocytes. In addition, mice lacking hepatocyte-specific interferon-α/ß signaling-(IfnarΔHep), or interferon-α/ß signaling in myeloid cells-(IfnarΔMyel) were infected. RESULTS: Here, we demonstrate that LCMV activates NF-κB signaling in hepatocytes. LCMV-triggered NF-κB activation in hepatocytes did not depend on Kupffer cells or TNFR1 signaling but rather on Toll-like receptor signaling. LCMV-infected IkkßΔHep livers displayed strongly elevated viral titers due to LCMV accumulation within hepatocytes, reduced interferon-stimulated gene (ISG) expression, delayed intrahepatic immune cell influx and delayed intrahepatic LCMV-specific CD8+ T cell responses. Notably, viral clearance and ISG expression were also reduced in LCMV-infected primary hepatocytes lacking IKKß, demonstrating a hepatocyte-intrinsic effect. Similar to livers of IkkßΔHep mice, enhanced hepatocytic LCMV accumulation was observed in livers of IfnarΔHep mice, whereas IfnarΔMyel mice were able to control LCMV infection. Hepatocytic NF-κB signaling was also required for efficient ISG induction in HDV-infected dHepaRG cells and interferon-α/ß-mediated inhibition of HBV replication in vitro. CONCLUSIONS: Together, these data show that hepatocyte-intrinsic NF-κB is a vital amplifier of interferon-α/ß signaling, which is pivotal for strong early ISG responses, immune cell infiltration and hepatic viral clearance. LAY SUMMARY: Innate immune cells have been ascribed a primary role in controlling viral clearance upon hepatic infections. We identified a novel dual role for NF-κB signaling in infected hepatocytes which was crucial for maximizing interferon responses and initiating adaptive immunity, thereby efficiently controlling hepatic virus replication.


Asunto(s)
Hepacivirus/genética , Hepatitis C Crónica/genética , Hepatitis C Crónica/inmunología , Hepatocitos/inmunología , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/fisiología , Subunidad p50 de NF-kappa B/genética , Polimorfismo de Nucleótido Simple , Factor de Transcripción ReIA/metabolismo , Replicación Viral/genética , Adulto , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Técnicas de Inactivación de Genes , Genotipo , Hepatitis C Crónica/virología , Humanos , Quinasa I-kappa B/deficiencia , Quinasa I-kappa B/genética , Coriomeningitis Linfocítica/virología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Transducción de Señal , Adulto Joven
3.
J Virol ; 93(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30567983

RESUMEN

GBF1 has emerged as a host factor required for the genome replication of RNA viruses of different families. During the hepatitis C virus (HCV) life cycle, GBF1 performs a critical function at the onset of genome replication but is dispensable when the replication is established. To better understand how GBF1 regulates HCV infection, we have looked for interactions between GBF1 and HCV proteins. NS3 was found to interact with GBF1 in yeast two-hybrid, coimmunoprecipitation, and proximity ligation assays and to interfere with GBF1 function and alter GBF1 intracellular localization in cells expressing NS3. The interaction was mapped to the Sec7 domain of GBF1 and the protease domain of NS3. A reverse yeast two-hybrid screen to identify mutations altering NS3-GBF1 interaction yielded an NS3 mutant (N77D, Con1 strain) that is nonreplicative despite conserved protease activity and does not interact with GBF1. The mutated residue is exposed at the surface of NS3, suggesting it is part of the domain of NS3 that interacts with GBF1. The corresponding mutation in strain JFH-1 (S77D) produces a similar phenotype. Our results provide evidence for an interaction between NS3 and GBF1 and suggest that an alteration of this interaction is detrimental to HCV genome replication.IMPORTANCE Single-stranded, positive-sense RNA viruses rely to a significant extent on host factors to achieve the replication of their genome. GBF1 is such a cellular protein that is required for the replication of several RNA viruses, but its mechanism of action during viral infections is not yet defined. In this study, we investigated potential interactions that GBF1 might engage in with proteins of HCV, a GBF1-dependent virus. We found that GBF1 interacts with NS3, a nonstructural protein involved in HCV genome replication, and our results suggest that this interaction is important for GBF1 function during HCV replication. Interestingly, GBF1 interaction with HCV appears different from its interaction with enteroviruses, another group of GBF1-dependent RNA viruses, in keeping with the fact that HCV and enteroviruses use different functions of GBF1.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Hepacivirus/metabolismo , Hepacivirus/fisiología , Proteínas no Estructurales Virales/metabolismo , Línea Celular , Hepatitis C/metabolismo , Hepatitis C/virología , Humanos , ARN Viral/genética , Replicación Viral/genética
4.
Gastroenterology ; 154(1): 211-223.e8, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28958858

RESUMEN

BACKGROUND & AIMS: Hepatitis E virus (HEV) infection is a major cause of acute hepatitis worldwide. Approximately 2 billion people live in areas endemic for HEV and are at risk of infection. The HEV genome encodes 3 proteins, including the ORF2 capsid protein. Detailed analyses of the HEV life cycle has been hampered by the lack of an efficient viral culture system. METHODS: We performed studies with gt3 HEV cell culture-produced particles and patient blood and stool samples. Samples were fractionated on iodixanol gradients and cushions. Infectivity assays were performed in vitro and in human liver chimeric mice. Proteins were analyzed by biochemical and proteomic approaches. Infectious particles were analyzed by transmission electron microscopy. HEV antigen levels were measured with the Wantaï enzyme-linked immunosorbent assay. RESULTS: We developed an efficient cell culture system and isolated HEV particles that were infectious in vitro and in vivo. Using transmission electron microscopy, we defined the ultrastructure of HEV cell culture-produced particles and particles from patient sera and stool samples. We also identified the precise sequence of the infectious particle-associated ORF2 capsid protein. In cultured cells and in samples from patients, HEV produced 3 forms of the ORF2 capsid protein: infectious/intracellular ORF2 (ORF2i), glycosylated ORF2 (ORF2g), and cleaved ORF2 (ORF2c). The ORF2i protein associated with infectious particles, whereas the ORF2g and ORF2c proteins were massively secreted glycoproteins not associated with infectious particles. ORF2g and ORF2c were the most abundant antigens detected in sera from patients. CONCLUSIONS: We developed a cell culture system and characterized HEV particles; we identified 3 ORF2 capsid proteins (ORF2i, ORF2g, and ORFc). These findings will advance our understanding of the HEV life cycle and improve diagnosis.


Asunto(s)
Proteínas de la Cápside/aislamiento & purificación , Virus de la Hepatitis E/fisiología , Hepatitis E/metabolismo , Proteínas Virales/aislamiento & purificación , Animales , Técnicas de Cultivo de Célula , Modelos Animales de Enfermedad , Hepatitis E/etiología , Hepatitis E/patología , Hepatocitos , Humanos , Ratones
5.
Cell Microbiol ; 20(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29112323

RESUMEN

The hepatitis E virus (HEV) genome is a single-stranded, positive-sense RNA that encodes three proteins including the ORF1 replicase. Mechanisms of HEV replication in host cells are unclear, and only a few cellular factors involved in this step have been identified so far. Here, we used brefeldin A (BFA) that blocks the activity of the cellular Arf guanine nucleotide exchange factors GBF1, BIG1, and BIG2, which play a major role in reshuffling of cellular membranes. We showed that BFA inhibits HEV replication in a dose-dependent manner. The use of siRNA and Golgicide A identified GBF1 as a host factor critically involved in HEV replication. Experiments using cells expressing a mutation in the catalytic domain of GBF1 and overexpression of wild type GBF1 or a BFA-resistant GBF1 mutant rescuing HEV replication in BFA-treated cells, confirmed that GBF1 is the only BFA-sensitive factor required for HEV replication. We demonstrated that GBF1 is likely required for the activity of HEV replication complexes. However, GBF1 does not colocalise with the ORF1 protein, and its subcellular distribution is unmodified upon infection or overexpression of viral proteins, indicating that GBF1 is likely not recruited to replication sites. Together, our results suggest that HEV replication involves GBF1-regulated mechanisms.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Virus de la Hepatitis E/crecimiento & desarrollo , ARN Viral/biosíntesis , Replicación Viral/fisiología , Antivirales/farmacología , Brefeldino A/farmacología , Línea Celular Tumoral , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Factores de Intercambio de Guanina Nucleótido/genética , Hepatitis E/patología , Hepatitis E/virología , Virus de la Hepatitis E/genética , Humanos , Piridinas/farmacología , Quinolinas/farmacología , Interferencia de ARN , ARN Interferente Pequeño/genética , Replicación Viral/efectos de los fármacos
6.
J Gen Virol ; 99(8): 1086-1096, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29923822

RESUMEN

GBF1 has emerged as a host factor required for the replication of positive-sense single-stranded RNA viruses of different families, but its mechanism of action is still unknown. GBF1 is a guanine nucleotide exchange factor for Arf family members. Recently, we identified Arf4 and Arf5 (class II Arfs) as host factors required for the replication of hepatitis C virus (HCV), a GBF1-dependent virus. To assess whether a GBF1/class II Arf pathway is conserved among positive-sense single-stranded RNA viruses, we investigated yellow fever virus (YFV), Sindbis virus (SINV), coxsackievirus B4 (CVB4) and human coronavirus 229E (HCoV-229E). We found that GBF1 is involved in the replication of these viruses. However, using siRNA or CRISPR-Cas9 technologies, it was seen that the depletion of Arf1, Arf3, Arf4 or Arf5 had no impact on viral replication. In contrast, the depletion of Arf pairs suggested that class II Arfs could be involved in HCoV-229E, YFV and SINV infection, as for HCV, but not in CVB4 infection. In addition, another Arf pair, Arf1 and Arf4, appears to be essential for YFV and SINV infection, but not for infection by other viruses. Finally, CVB4 infection was not inhibited by any combination of Arf depletion. We conclude that the mechanism of action of GBF1 in viral replication appears not to be conserved, and that a subset of positive-sense single-stranded RNA viruses from different families might require class II Arfs for their replication.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Virus ARN/fisiología , Replicación Viral/fisiología , Animales , Brefeldino A , Línea Celular , Supervivencia Celular , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Ratones , Piridinas/farmacología , Quinolinas/farmacología , Interferencia de ARN
7.
Cell Microbiol ; 18(8): 1121-33, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26814617

RESUMEN

GBF1 is a host factor required for hepatitis C virus (HCV) replication. GBF1 functions as a guanine nucleotide exchange factor for G-proteins of the Arf family, which regulate membrane dynamics in the early secretory pathway and the metabolism of cytoplasmic lipid droplets. Here we established that the Arf-guanine nucleotide exchange factor activity of GBF1 is critical for its function in HCV replication, indicating that it promotes viral replication by activating one or more Arf family members. Arf involvement was confirmed with the use of two dominant negative Arf1 mutants. However, siRNA-mediated depletion of Arf1, Arf3 (class I Arfs), Arf4 or Arf5 (class II Arfs), which potentially interact with GBF1, did not significantly inhibit HCV infection. In contrast, the simultaneous depletion of both Arf4 and Arf5, but not of any other Arf pair, imposed a significant inhibition of HCV infection. Interestingly, the simultaneous depletion of both Arf4 and Arf5 had no impact on the activity of the secretory pathway and induced a compaction of the Golgi and an accumulation of lipid droplets. A similar phenotype of lipid droplet accumulation was also observed when GBF1 was inhibited by brefeldin A. In contrast, the simultaneous depletion of both Arf1 and Arf4 resulted in secretion inhibition and Golgi scattering, two actions reminiscent of GBF1 inhibition. We conclude that GBF1 could regulate different metabolic pathways through the activation of different pairs of Arf proteins.


Asunto(s)
Factor 1 de Ribosilacion-ADP/fisiología , Factores de Intercambio de Guanina Nucleótido/fisiología , Hepacivirus/fisiología , Hepatitis C/virología , Replicación Viral , Línea Celular Tumoral , Hepatitis C/enzimología , Interacciones Huésped-Patógeno , Humanos , Gotas Lipídicas , Dominios Proteicos , Transporte de Proteínas , Vías Secretoras
8.
J Gen Virol ; 96(Pt 2): 311-321, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25351725

RESUMEN

Core plays a critical role during hepatitis C virus (HCV) assembly, not only as a structural component of the virion, but also as a regulator of the formation of assembly sites. In this study, we observed that core is expressed later than other HCV proteins in a single viral cycle assay, resulting in a relative increase of core expression during a late step of the viral life cycle. This delayed core expression results from an increase of core half-life, indicating that core is initially degraded and is stabilized at a late step of the HCV life cycle. Stabilization-mediated delayed kinetics of core expression were also observed using heterologous expression systems. Core stabilization did not depend on its interaction with non-structural proteins or lipid droplets but was correlated with its expression levels and its oligomerization status. Therefore in the course of a HCV infection, core stabilization is likely to occur when the prior amplification of the viral genome during an initial replication step allows core to be synthesized at higher levels as a stable protein, during the assembly step of the viral life cycle.


Asunto(s)
Regulación Viral de la Expresión Génica , Hepacivirus/fisiología , Proteínas del Núcleo Viral/biosíntesis , Replicación Viral , Línea Celular , Perfilación de la Expresión Génica , Hepacivirus/genética , Hepatocitos/virología , Humanos , Estabilidad Proteica , Factores de Tiempo , Proteínas del Núcleo Viral/genética
9.
JHEP Rep ; 4(3): 100415, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35141510

RESUMEN

BACKGROUND & AIMS: HDV superinfection of chronically HBV-infected patients is the most aggressive form of chronic viral hepatitis, with an accelerated progression towards fibrosis/cirrhosis and increased risk of liver failure, hepatocellular carcinoma, and death. While HDV infection is not susceptible to available direct anti-HBV drugs, suboptimal responses are obtained with interferon-α-based therapies, and the number of investigational drugs remains limited. We therefore analyzed the effect of several innate immune stimulators on HDV replication in infected hepatocytes. METHODS: We used in vitro models of HDV and HBV infection based on primary human hepatocytes (PHHs) and the non-transformed HepaRG cell line that are relevant to explore new innate immune therapies. RESULTS: We describe here, for the first time, anti-HDV effects of Pam3CSK4 and BS1, agonists of Toll-like receptor (TLR)-1/2, and the lymphotoxin-ß receptor (LTßR), respectively. Both types of agonists induced dose-dependent reductions of total intracellular HDV genome and antigenome RNA and of HDV protein levels, without toxicity in cells monoinfected with HDV or co/superinfected with HBV. Moreover, both molecules negatively affected HDV progeny release and strongly decreased their specific infectivity. The latter effect is particularly important since HDV is thought to persist in humans through constant propagation. CONCLUSIONS: Immune-modulators inducing NF-κB pathways in hepatocytes can inhibit HDV replication and should be further evaluated as a possible therapeutic approach in chronically HBV/HDV-infected patients. LAY SUMMARY: Hepatitis delta virus causes the most severe form of viral hepatitis. Despite positive recent developments, effective treatments remain a major clinical need. Herein, we show that immune-modulators that trigger the NF-κB pathways could be effective for the treatment of hepatitis delta infections.

10.
JHEP Rep ; 3(6): 100354, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34704004

RESUMEN

BACKGROUND & AIMS: Immune-mediated induction of cytidine deaminase APOBEC3B (A3B) expression leads to HBV covalently closed circular DNA (cccDNA) decay. Here, we aimed to decipher the signalling pathway(s) and regulatory mechanism(s) involved in A3B induction and related HBV control. METHODS: Differentiated HepaRG cells (dHepaRG) knocked-down for NF-κB signalling components, transfected with siRNA or micro RNAs (miRNA), and primary human hepatocytes ± HBV or HBVΔX or HBV-RFP, were treated with lymphotoxin beta receptor (LTßR)-agonist (BS1). The biological outcomes were analysed by reverse transcriptase-qPCR, immunoblotting, luciferase activity, chromatin immune precipitation, electrophoretic mobility-shift assay, targeted-bisulfite-, miRNA-, RNA-, genome-sequencing, and mass-spectrometry. RESULTS: We found that canonical and non-canonical NF-κB signalling pathways are mandatory for A3B induction and anti-HBV effects. The degree of immune-mediated A3B production is independent of A3B promoter demethylation but is controlled post-transcriptionally by the miRNA 138-5p expression (hsa-miR-138-5p), promoting A3B mRNA decay. Hsa-miR-138-5p over-expression reduced A3B levels and its antiviral effects. Of note, established infection inhibited BS1-induced A3B expression through epigenetic modulation of A3B promoter. Twelve days of treatment with a LTßR-specific agonist BS1 is sufficient to reduce the cccDNA pool by 80% without inducing significant damages to a subset of cancer-related host genes. Interestingly, the A3B-mediated effect on HBV is independent of the transcriptional activity of cccDNA as well as on rcDNA synthesis. CONCLUSIONS: Altogether, A3B represents the only described enzyme to target both transcriptionally active and inactive cccDNA. Thus, inhibiting hsa-miR-138-5p expression should be considered in the combinatorial design of new therapies against HBV, especially in the context of immune-mediated A3B induction. LAY SUMMARY: Immune-mediated induction of cytidine deaminase APOBEC3B is transcriptionally regulated by NF-κB signalling and post-transcriptionally downregulated by hsa-miR-138-5p expression, leading to cccDNA decay. Timely controlled APOBEC3B-mediated cccDNA decay occurs independently of cccDNA transcriptional activity and without damage to a subset of cancer-related genes. Thus, APOBEC3B-mediated cccDNA decay could offer an efficient therapeutic alternative to target hepatitis B virus chronic infection.

11.
Sci Rep ; 9(1): 6243, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-31000788

RESUMEN

Hepatitis E Virus (HEV) genome encodes three proteins including the ORF2 capsid protein. Recently, we demonstrated that HEV produces three different forms of ORF2: (i) the ORF2i form (infectious ORF2) which is the component of infectious particles, (ii) the secreted ORF2g (glycosylated ORF2) and ORF2c (cleaved ORF2) forms that are not associated with infectious particles, but are the major antigens in HEV-infected patient sera. The ORF2 protein sequence contains three highly conserved potential N-glycosylation sites (N1, N2 and N3). The status and biological relevance of ORF2 N-glycosylation in HEV lifecycle remain to be elucidated. Here, we generated and extensively characterized a series of ORF2 mutants in which the three N-glycosylation sites were mutated individually or in combination. We demonstrated that the ORF2g/c protein is N-glycosylated on N1 and N3 sites but not on the N2 site. We showed that N-glycosylation of ORF2 protein does not play any role in replication and assembly of infectious HEV particles. We found that glycosylated ORF2g/c forms are very stable proteins which are targeted by patient antibodies. We also demonstrated that the ORF2i protein is translocated into the nucleus of infected cells. Hence, our study led to new insights into the molecular mechanisms of ORF2 expression.


Asunto(s)
Virus de la Hepatitis E/patogenicidad , Proteínas Virales/química , Proteínas Virales/metabolismo , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Anticuerpos Antivirales/química , Anticuerpos Antivirales/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/virología , Glicosilación , Virus de la Hepatitis E/genética , Virus de la Hepatitis E/fisiología , Interacciones Huésped-Patógeno , Humanos , Mutación , Señales de Clasificación de Proteína , Estabilidad Proteica , Proteínas Virales/genética , Proteínas Virales/inmunología
12.
Biology (Basel) ; 3(4): 892-921, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25517881

RESUMEN

Hepatitis C Virus (HCV) infects over 150 million people worldwide. In most cases HCV infection becomes chronic, causing liver disease ranging from fibrosis to cirrhosis and hepatocellular carcinoma. HCV affects the cholesterol homeostasis and at the molecular level, every step of the virus life cycle is intimately connected to lipid metabolism. In this review, we present an update on the lipids and apolipoproteins that are involved in the HCV infectious cycle steps: entry, replication and assembly. Moreover, the result of the assembly process is a lipoviroparticle, which represents a peculiarity of hepatitis C virion. This review illustrates an example of an intricate virus-host interaction governed by lipid metabolism.

13.
PLoS One ; 8(9): e74491, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24058576

RESUMEN

Recent reports indicate that the replication of hepatitis C virus (HCV) depends on the GBF1-Arf1-COP-I pathway. We generated Huh-7-derived cell lines resistant to brefeldin A (BFA), which is an inhibitor of this pathway. The resistant cell lines could be sorted into two phenotypes regarding BFA-induced toxicity, inhibition of albumin secretion, and inhibition of HCV infection. Two cell lines were more than 100 times more resistant to BFA than the parental Huh-7 cells in these 3 assays. This resistant phenotype was correlated with the presence of a point mutation in the Sec7 domain of GBF1, which is known to impair the binding of BFA. Surprisingly, the morphology of the cis-Golgi of these cells remained sensitive to BFA at concentrations of the drug that allowed albumin secretion, indicating a dichotomy between the phenotypes of secretion and Golgi morphology. Cells of the second group were about 10 times more resistant than parental Huh-7 cells to the BFA-induced toxicity. The EC50 for albumin secretion was only 1.5-1.8 fold higher in these cells than in Huh-7 cells. However their level of secretion in the presence of inhibitory doses of BFA was 5 to 15 times higher. Despite this partially effective secretory pathway in the presence of BFA, the HCV infection was almost as sensitive to BFA as in Huh-7 cells. This suggests that the function of GBF1 in HCV replication does not simply reflect its role of regulator of the secretory pathway of the host cell. Thus, our results confirm the involvement of GBF1 in HCV replication, and suggest that GBF1 might fulfill another function, in addition to the regulation of the secretory pathway, during HCV replication.


Asunto(s)
Brefeldino A/farmacología , Carcinoma Hepatocelular/virología , Resistencia a Antineoplásicos/efectos de los fármacos , Aparato de Golgi/metabolismo , Hepacivirus/fisiología , Neoplasias Hepáticas/virología , Replicación Viral/efectos de los fármacos , Factor 1 de Ribosilacion-ADP/metabolismo , Animales , Apolipoproteínas E/metabolismo , Secuencia de Bases , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Compartimento Celular/efectos de los fármacos , Línea Celular Tumoral , Separación Celular , Supervivencia Celular/efectos de los fármacos , Perros , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Aparato de Golgi/efectos de los fármacos , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Hepatitis C/patología , Hepatitis C/virología , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Datos de Secuencia Molecular , Mutación/genética , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA