Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Mammary Gland Biol Neoplasia ; 29(1): 9, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695983

RESUMEN

Improved screening and treatment have decreased breast cancer mortality, although incidence continues to rise. Women at increased risk of breast cancer can be offered risk reducing treatments, such as tamoxifen, but this has not been shown to reduce breast cancer mortality. New, more efficacious, risk-reducing agents are needed. The identification of novel candidates for prevention is hampered by a lack of good preclinical models. Current patient derived in vitro and in vivo models cannot fully recapitulate the complexities of the human tissue, lacking human extracellular matrix, stroma, and immune cells, all of which are known to influence therapy response. Here we describe a normal breast explant model utilising a tuneable hydrogel which maintains epithelial proliferation, hormone receptor expression, and residency of T cells and macrophages over 7 days. Unlike other organotypic tissue cultures which are often limited by hyper-proliferation, loss of hormone signalling, and short treatment windows (< 48h), our model shows that tissue remains viable over 7 days with none of these early changes. This offers a powerful and unique opportunity to model the normal breast and study changes in response to various risk factors, such as breast density and hormone exposure. Further validation of the model, using samples from patients undergoing preventive therapies, will hopefully confirm this to be a valuable tool, allowing us to test novel agents for breast cancer risk reduction preclinically.


Asunto(s)
Proliferación Celular , Humanos , Femenino , Proliferación Celular/fisiología , Mama/patología , Neoplasias de la Mama/patología , Neoplasias de la Mama/prevención & control , Hidrogeles , Glándulas Mamarias Humanas/patología , Macrófagos/metabolismo , Macrófagos/inmunología
2.
Bioorg Med Chem Lett ; 98: 129546, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37944866

RESUMEN

Epigenetic proteins containing YEATS domains (YD) are an emerging target class in drug discovery. Described herein are the discovery and characterization efforts associated with PFI-6, a new chemical probe for the YD of MLLT1 (ENL/YEATS1) and MLLT3 (AF9/YEATS3). For hit identification, fragment-like mimetics of endogenous YD ligands (crotonylated histone-containing proteins), were synthesized via parallel medicinal chemistry (PMC) and screened for MLLT1 binding. Subsequent SAR studies led to iterative MLLT1/3 binding and selectivity improvements, culminating in the discovery of PFI-6. PFI-6 demonstrates good affinity and selectivity for MLLT1/3 vs. other human YD proteins (YEATS2/4) and engages MLLT3 in cells. Small-molecule X-ray co-crystal structures of two molecules, including PFI-6, bound to the YD of MLLT1/3 are also described. PFI-6 may be a useful tool molecule to better understand the biological effects associated with modulation of MLLT1/3.


Asunto(s)
Histonas , Proteínas Nucleares , Humanos , Proteínas Nucleares/metabolismo , Histonas/metabolismo , Dominios Proteicos , Descubrimiento de Drogas , Proteínas de Neoplasias/metabolismo , Factores de Transcripción/metabolismo
3.
Angew Chem Int Ed Engl ; 57(50): 16302-16307, 2018 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-30288907

RESUMEN

YEATS domain (YD) containing proteins are an emerging class of epigenetic targets in drug discovery. Dysregulation of these modified lysine-binding proteins has been linked to the onset and progression of cancers. We herein report the discovery and characterisation of the first small-molecule chemical probe, SGC-iMLLT, for the YD of MLLT1 (ENL/YEATS1) and MLLT3 (AF9/YEATS3). SGC-iMLLT is a potent and selective inhibitor of MLLT1/3-histone interactions. Excellent selectivity over other human YD proteins (YEATS2/4) and bromodomains was observed. Furthermore, our probe displays cellular target engagement of MLLT1 and MLLT3. The first small-molecule X-ray co-crystal structures with the MLLT1 YD are also reported. This first-in-class probe molecule can be used to understand MLLT1/3-associated biology and the therapeutic potential of small-molecule YD inhibitors.


Asunto(s)
Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/química , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/química , Bibliotecas de Moléculas Pequeñas/química , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/química , Cristalografía por Rayos X , Histonas/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Dominios Proteicos , Mapas de Interacción de Proteínas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Factores de Transcripción/metabolismo
4.
J Pathol ; 240(3): 315-328, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27512948

RESUMEN

The initiation and progression of breast cancer from the transformation of the normal epithelium to ductal carcinoma in situ (DCIS) and invasive disease is a complex process involving the acquisition of genetic alterations and changes in gene expression, alongside microenvironmental and recognized histological alterations. Here, we sought to comprehensively characterise the genomic and transcriptomic features of the MCF10 isogenic model of breast cancer progression, and to functionally validate potential driver alterations in three-dimensional (3D) spheroids that may provide insights into breast cancer progression, and identify targetable alterations in conditions more similar to those encountered in vivo. We performed whole genome, exome and RNA sequencing of the MCF10 progression series to catalogue the copy number and mutational and transcriptomic landscapes associated with progression. We identified a number of predicted driver mutations (including PIK3CA and TP53) that were acquired during transformation of non-malignant MCF10A cells to their malignant counterparts that are also present in analysed primary breast cancers from The Cancer Genome Atlas (TCGA). Acquisition of genomic alterations identified MYC amplification and previously undescribed RAB3GAP1-HRAS and UBA2-PDCD2L expressed in-frame fusion genes in malignant cells. Comparison of pathway aberrations associated with progression showed that, when cells are grown as 3D spheroids, they show perturbations of cancer-relevant pathways. Functional interrogation of the dependency on predicted driver events identified alterations in HRAS, PIK3CA and TP53 that selectively decreased cell growth and were associated with progression from preinvasive to invasive disease only when cells were grown as spheroids. Our results have identified changes in the genomic repertoire in cell lines representative of the stages of breast cancer progression, and demonstrate that genetic dependencies can be uncovered when cells are grown in conditions more like those in vivo. The MCF10 progression series therefore represents a good model with which to dissect potential biomarkers and to evaluate therapeutic targets involved in the progression of breast cancer. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias de la Mama/genética , Carcinoma Ductal de Mama/genética , Carcinoma Intraductal no Infiltrante/genética , Modelos Biológicos , Fosfatidilinositol 3-Quinasas/genética , Transcriptoma , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/patología , Carcinoma Intraductal no Infiltrante/patología , Línea Celular Tumoral , Transformación Celular Neoplásica , Fosfatidilinositol 3-Quinasa Clase I , ADN de Neoplasias/química , ADN de Neoplasias/genética , Progresión de la Enfermedad , Exoma/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación , Fosfatidilinositol 3-Quinasas/metabolismo , Análisis de Secuencia de ADN , Esferoides Celulares , Proteína p53 Supresora de Tumor/genética
5.
J Mammary Gland Biol Neoplasia ; 21(3-4): 99-109, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27680982

RESUMEN

Breast cancer specific mortality results from tumour cell dissemination and metastatic colonisation. Identification of the cells and processes responsible for metastasis will enable better prevention and control of metastatic disease, thus reducing relapse and mortality. To better understand these processes, we prospectively collected 307 patient-derived breast cancer samples (n = 195 early breast cancers (EBC) and n = 112 metastatic samples (MBC)). We assessed colony-forming activity in vitro by growing isolated cells in both primary (formation) and secondary (self-renewal) mammosphere culture, and tumour initiating activity in vivo through subcutaneous transplantation of fragments or cells into mice. Metastatic samples formed primary mammosphere colonies significantly more frequently than early breast cancers and had significantly higher primary mammosphere colony formation efficiency (0.9 % vs. 0.6 %; p < 0.0001). Tumour initiation in vivo was significantly higher in metastatic than early breast cancer samples (63 % vs. 38 %, p = 0.04). Of 144 breast cancer samples implanted in vivo, we established 20 stable patient-derived xenograft (PDX) models at passage 2 or greater. Lung metastases were detected in mice from 14 PDX models. Mammosphere colony formation in vitro significantly correlated with the ability of a tumour to metastasise to the lungs in vivo (p = 0.05), but not with subcutaneous tumour initiation. In summary, the breast cancer stem cell activities of colony formation and tumour initiation are increased in metastatic compared to early samples, and predict metastasis in vivo. These results suggest that breast stem cell activity will predict for poor outcome tumours, and therapy targeting this activity will improve outcomes for patients with metastatic disease.


Asunto(s)
Neoplasias de la Mama/patología , Mama/patología , Transformación Celular Neoplásica/patología , Xenoinjertos/patología , Metástasis de la Neoplasia/patología , Animales , Técnicas de Cultivo de Célula/métodos , Proliferación Celular/fisiología , Progresión de la Enfermedad , Femenino , Humanos , Ratones , Estudios Prospectivos
6.
Stem Cells ; 33(2): 327-41, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25187396

RESUMEN

Cancer stem cells (CSCs) can avoid or efficiently repair DNA damage from radio and chemotherapy, which suggests they play a role in disease recurrence. Twenty percentage of patients treated with surgery and radiotherapy for ductal carcinoma in situ (DCIS) of the breast recur and our previous data show that high grade DCIS have increased numbers of CSCs. Here, we investigate the role of focal adhesion kinase (FAK) and Wnt pathways in DCIS stem cells and their capacity to survive irradiation. Using DCIS cell lines and patient samples, we demonstrate that CSC-enriched populations are relatively radioresistant and possess high FAK activity. Immunohistochemical studies of active FAK in DCIS tissue show high expression was associated with a shorter median time to recurrence. Treatment with a FAK inhibitor or FAK siRNA in nonadherent and three-dimensional matrigel culture reduced mammosphere formation, and potentiated the effect of 2 Gy irradiation. Moreover, inhibition of FAK in vitro and in vivo decreased self-renewal capacity, levels of Wnt3a and B-Catenin revealing a novel FAK-Wnt axis regulating DCIS stem cell activity. Overall, these data establish that the FAK-Wnt axis is a promising target to eradicate self-renewal capacity and progression of human breast cancers.


Asunto(s)
Neoplasias de la Mama , Carcinoma Ductal de Mama , Quinasa 1 de Adhesión Focal/metabolismo , Células Madre Neoplásicas , Tolerancia a Radiación/efectos de la radiación , Vía de Señalización Wnt/efectos de la radiación , Animales , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Neoplasias de la Mama/radioterapia , Carcinoma Ductal de Mama/enzimología , Carcinoma Ductal de Mama/patología , Carcinoma Ductal de Mama/radioterapia , Línea Celular Tumoral , Femenino , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Humanos , Ratones , Ratones Desnudos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Células Madre Neoplásicas/enzimología , Células Madre Neoplásicas/patología , ARN Interferente Pequeño/farmacología , Tolerancia a Radiación/efectos de los fármacos , Proteína Wnt3A/metabolismo , beta Catenina/metabolismo
7.
Sci Rep ; 14(1): 328, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172189

RESUMEN

H3K27-altered Diffuse Midline Glioma (DMG) is a universally fatal paediatric brainstem tumour. The prevalent driver mutation H3K27M creates a unique epigenetic landscape that may also establish therapeutic vulnerabilities to epigenetic inhibitors. However, while HDAC, EZH2 and BET inhibitors have proven somewhat effective in pre-clinical models, none have translated into clinical benefit due to either poor blood-brain barrier penetration, lack of efficacy or toxicity. Thus, there remains an urgent need for new DMG treatments. Here, we performed wider screening of an epigenetic inhibitor library and identified inhibitors of protein arginine methyltransferases (PRMTs) among the top hits reducing DMG cell viability. Two of the most effective inhibitors, LLY-283 and GSK591, were targeted against PRMT5 using distinct binding mechanisms and reduced the viability of a subset of DMG cells expressing wild-type TP53 and mutant ACVR1. RNA-sequencing and phenotypic analyses revealed that LLY-283 could reduce the viability, clonogenicity and invasion of DMG cells in vitro, representing three clinically important phenotypes, but failed to prolong survival in an orthotopic xenograft model. Together, these data show the challenges of DMG treatment and highlight PRMT5 inhibitors for consideration in future studies of combination treatments.


Asunto(s)
Neoplasias Encefálicas , Neoplasias del Tronco Encefálico , Glioma , Niño , Humanos , Barrera Hematoencefálica , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Neoplasias del Tronco Encefálico/genética , Supervivencia Celular , Terapia Combinada , Glioma/tratamiento farmacológico , Glioma/genética , Mutación , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Proteína-Arginina N-Metiltransferasas/genética
8.
J Med Chem ; 67(7): 5837-5853, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38533580

RESUMEN

The methyl-lysine reader protein SPIN1 plays important roles in various human diseases. However, targeting methyl-lysine reader proteins has been challenging. Very few cellularly active SPIN1 inhibitors have been developed. We previously reported that our G9a/GLP inhibitor UNC0638 weakly inhibited SPIN1. Here, we present our comprehensive structure-activity relationship study that led to the discovery of compound 11, a dual SPIN1 and G9a/GLP inhibitor, and compound 18 (MS8535), a SPIN1 selective inhibitor. We solved the cocrystal structure of SPIN1 in complex with 11, confirming that 11 occupied one of the three Tudor domains. Importantly, 18 displayed high selectivity for SPIN1 over 38 epigenetic targets, including G9a/GLP, and concentration dependently disrupted the interactions of SPIN1 and H3 in cells. Furthermore, 18 was bioavailable in mice. We also developed 19 (MS8535N), which was inactive against SPIN1, as a negative control of 18. Collectively, these compounds are useful chemical tools to study biological functions of SPIN1.


Asunto(s)
Lisina , Dominio Tudor , Humanos , Animales , Ratones , Relación Estructura-Actividad
9.
Breast Cancer Res ; 15(4): 210, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24041156

RESUMEN

Breast cancer stem-like cells (CSCs) are an important therapeutic target as they are purported to be responsible for tumor initiation, maintenance, metastases, and disease recurrence. Interleukin-8 (IL-8) is upregulated in breast cancer compared with normal breast tissue and is associated with poor prognosis. IL-8 is reported to promote breast cancer progression by increasing cell invasion, angiogenesis, and metastases and is upregulated in HER2-positive cancers. Recently, we and others have established that IL-8 via its cognate receptors, CXCR1 and CXCR2, is also involved in regulating breast CSC activity. Our work demonstrates that in metastatic breast CSCs, CXCR1/2 signals via transactivation of HER2. Given the importance of HER2 in breast cancer and in regulating CSC activity, a pathway driving the activation of these receptors would have important biological and clinical consequences, especially in tumors that express high levels of IL-8 and other CXCR1/2-activating ligands. Here, we review the IL-8 signaling pathway and the role of HER2 in maintaining an IL-8 inflammatory loop and discuss the potential of combining CXCR1/2 inhibitors with other treatments such as HER2-targeted therapy as a novel approach to eliminate CSCs and improve patient survival.


Asunto(s)
Neoplasias de la Mama/metabolismo , Interleucina-8/metabolismo , Células Madre Neoplásicas/metabolismo , Transducción de Señal , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Humanos , Inflamación/metabolismo , Inflamación/patología , Terapia Molecular Dirigida , Células Madre Neoplásicas/efectos de los fármacos , Receptor ErbB-2/metabolismo , Receptores de Interleucina-8A/metabolismo , Receptores de Interleucina-8B/metabolismo , Transducción de Señal/efectos de los fármacos
10.
Stem Cells ; 30(5): 854-64, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22389315

RESUMEN

Although the luminal progenitor cell of the normal mammary gland hierarchy has been proposed as the cell-of-origin for basal-like breast cancers, finding the cancer stem cell (CSC) phenotype for this malignancy has proven a difficult task, mostly due to the lack of specific markers. Recently, basal-like sporadic and familial cases of breast cancer have been linked to BRCA1 gene inactivation, which enables the upregulation of the target-repressed CDH3/P-cadherin gene, an important biomarker of basal-like breast carcinomas. Previously, we demonstrated that P-cadherin overexpression can mediate aggressive behavior in these tumors. Thus, our aim was to test whether P-cadherin mediates stem cell properties in basal-like breast carcinomas. Using a series of breast cancer cell lines and primary tumors, we showed that P-cadherin was directly associated with the expression of the breast stem markers CD44, CD49f, and aldehyde dehydrogenase 1 in the basal subtype. Moreover, cell population enriched for P-cadherin expression comprised increased in vitro mammosphere-forming efficiency and capacity to grow colonies in three-dimensional cultures as well as greater tumorigenicity. Importantly, an association was found with stem-/progenitor-like phenotypes of the breast, including the luminal progenitor population, CD49f(+) CD24(+). Additionally, P-cadherin expression conferred resistance to x-ray-induced cell death, sustaining a role for this molecule in another stem cell property. In summary, we demonstrated, for the first time, that P-cadherin mediates stem cell properties, which could be explored in order to better define the CSC phenotype of basal-like breast tumors and the cell-of-origin of this malignancy.


Asunto(s)
Neoplasias de la Mama/metabolismo , Cadherinas/biosíntesis , Regulación Neoplásica de la Expresión Génica , Receptores de Hialuranos/biosíntesis , Integrina alfa6/biosíntesis , Proteínas de Neoplasias/biosíntesis , Neoplasias Basocelulares/metabolismo , Células Madre Neoplásicas/metabolismo , Familia de Aldehído Deshidrogenasa 1 , Neoplasias de la Mama/patología , Muerte Celular/efectos de la radiación , Línea Celular Tumoral , Femenino , Humanos , Isoenzimas/biosíntesis , Neoplasias Basocelulares/patología , Células Madre Neoplásicas/patología , Retinal-Deshidrogenasa/biosíntesis , Rayos X
11.
J Mammary Gland Biol Neoplasia ; 17(2): 111-7, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22665270

RESUMEN

Since the discovery that neural tissue contains a population of stem cells that form neurospheres in vitro, sphere-forming assays have been adapted for use with a number of different tissue types for the quantification of stem cell activity and self-renewal. One tissue type widely used for stem cell investigations is mammary tissue, and the mammosphere assay has been used in both normal tissue and cancer. Although it is a relatively simple assay to learn, it can be difficult to master. There are methodological and analytical aspects to the assay which require careful consideration when interpreting the results. We describe here a detailed mammosphere assay protocol for the assessment of stem cell activity and self-renewal, and discuss how data generated by the assay can be analysed and interpreted.


Asunto(s)
Neoplasias de la Mama/patología , Glándulas Mamarias Humanas/patología , Células Madre Neoplásicas/patología , Ensayo de Tumor de Célula Madre , Animales , Carcinoma Intraductal no Infiltrante/patología , Línea Celular , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Glándulas Mamarias Animales/patología
12.
J Med Chem ; 66(1): 460-472, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36562986

RESUMEN

A series of small-molecule YEATS4 binders have been discovered as part of an ongoing research effort to generate high-quality probe molecules for emerging and/or challenging epigenetic targets. Analogues such as 4d and 4e demonstrate excellent potency and selectivity for YEATS4 binding versus YEATS1,2,3 and exhibit good physical properties and in vitro safety profiles. A new X-ray crystal structure confirms direct binding of this chemical series to YEATS4 at the lysine acetylation recognition site of the YEATS domain. Multiple analogues engage YEATS4 with nanomolar potency in a whole-cell nanoluciferase bioluminescent resonance energy transfer assay. Rodent pharmacokinetic studies demonstrate the competency of several analogues as in vivo-capable binders.


Asunto(s)
Regulación de la Expresión Génica , Procesamiento Proteico-Postraduccional , Dominios Proteicos , Acetilación , Epigénesis Genética
14.
NPJ Breast Cancer ; 7(1): 65, 2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34050172

RESUMEN

Cancer stem-like cells (CSC) contribute to therapy resistance and recurrence. Focal adhesion kinase (FAK) has a role in CSC regulation. We determined the effect of FAK inhibition on breast CSC activity alone and in combination with adjuvant therapies. FAK inhibition reduced CSC activity and self-renewal across all molecular subtypes in primary human breast cancer samples. Combined FAK and paclitaxel reduced self-renewal in triple negative cell lines. An invasive breast cancer cohort confirmed high FAK expression correlated with increased risk of recurrence and reduced survival. Co-expression of FAK and CSC markers was associated with the poorest prognosis, identifying a high-risk patient population. Combined FAK and paclitaxel treatment reduced tumour size, Ki67, ex-vivo mammospheres and ALDH+ expression in two triple negative patient derived Xenograft (PDX) models. Combined treatment reduced tumour initiation in a limiting dilution re-implantation PDX model. Combined FAK inhibition with adjuvant therapy has the potential to improve breast cancer survival.

15.
Cancer Res ; 81(4): 847-859, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33509944

RESUMEN

Triple-negative breast cancers (TNBC) are resistant to standard-of-care chemotherapy and lack known targetable driver gene alterations. Identification of novel drivers could aid the discovery of new treatment strategies for this hard-to-treat patient population, yet studies using high-throughput and accurate models to define the functions of driver genes in TNBC to date have been limited. Here, we employed unbiased functional genomics screening of the 200 most frequently mutated genes in breast cancer, using spheroid cultures to model in vivo-like conditions, and identified the histone acetyltransferase CREBBP as a novel tumor suppressor in TNBC. CREBBP protein expression in patient tumor samples was absent in 8% of TNBCs and at a high frequency in other tumors, including squamous lung cancer, where CREBBP-inactivating mutations are common. In TNBC, CREBBP alterations were associated with higher genomic heterogeneity and poorer patient survival and resulted in upregulation and dependency on a FOXM1 proliferative program. Targeting FOXM1-driven proliferation indirectly with clinical CDK4/6 inhibitors (CDK4/6i) selectively impaired growth in spheroids, cell line xenografts, and patient-derived models from multiple tumor types with CREBBP mutations or loss of protein expression. In conclusion, we have identified CREBBP as a novel driver in aggressive TNBC and identified an associated genetic vulnerability in tumor cells with alterations in CREBBP and provide a preclinical rationale for assessing CREBBP alterations as a biomarker of CDK4/6i response in a new patient population. SIGNIFICANCE: This study demonstrates that CREBBP genomic alterations drive aggressive TNBC, lung cancer, and lymphomas and may be selectively treated with clinical CDK4/6 inhibitors.


Asunto(s)
Proteína de Unión a CREB/fisiología , Carcinogénesis/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Animales , Proteína de Unión a CREB/genética , Proliferación Celular/genética , Células Cultivadas , Ensayos de Selección de Medicamentos Antitumorales/métodos , Femenino , Genómica/métodos , Células HCT116 , Células HEK293 , Humanos , Ratones , Ratones Endogámicos NOD , Ratones Desnudos , Terapia Molecular Dirigida , Mutación , Invasividad Neoplásica , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
16.
J Mammary Gland Biol Neoplasia ; 14(1): 45-54, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19252972

RESUMEN

From a developmental point of view, tumors can be seen as aberrant versions of their tissue of origin. For example, tumors often partially retain differentiation markers of their tissue of origin and there is evidence that they contain cancer stem cells (CSCs) that drive tumorigenesis. In this review, we summarise current evidence that breast CSCs may partly explain endocrine resistance in breast cancer. In normal breast, the stem cells are known to possess a basal phenotype and to be mainly ERalpha-. If the hierarchy in breast cancer reflects this, the breast CSC may be endocrine resistant because it expresses very little ERalpha and can only respond to treatment by virtue of paracrine influences of neighboring, differentiated ERalpha+ tumor cells. Normal breast epithelial stem cells are highly dependent on the EGFR and other growth factor receptors and it may be that the observed increased growth factor receptor expression in endocrine-resistant breast cancers reflects an increased proportion of CSCs selected by endocrine therapies. There is evidence from a number of studies that breast CSCs are ERalpha- and EGFR+/HER2+, which would support this view. CSCs also express mesenchymal genes which are suppressed by ERalpha expression, further indicating the mutual exclusion between ERalpha+ cells and the CSCs. As we learn more about CSCs, differentiation and the expression and functional activity of the ERalpha in these cells in diverse breast tumor sub-types, it is hoped that our understanding will lead to new modalities to overcome the problem of endocrine resistance in the clinic.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos/efectos de los fármacos , Sistema Endocrino/efectos de los fármacos , Receptor alfa de Estrógeno/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Epigénesis Genética , Humanos , Células Madre Neoplásicas/metabolismo
17.
Wellcome Open Res ; 5: 42, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-36865034

RESUMEN

Background: The leukaemia-derived Jurkat E6.1 cell line has been used as a model T cell in the study of many aspects of T cell biology, most notably activation in response to T cell receptor (TCR) engagement. Methods: We present whole-transcriptome RNA-Sequencing data for Jurkat E6.1 cells in the resting state and two hours post-activation via TCR and CD28. We compare early transcriptional responses in the presence and absence of the chemokines CXCL12 and CCL19, and perform a basic comparison between observed transcriptional responses in Jurkat E6.1 cells and those in primary human T cells using publicly deposited data. Results: Jurkat E6.1 cells have many of the hallmarks of standard T cell transcriptional responses to activation, but lack most of the depth of responses in primary cells. Conclusions: These data indicate that Jurkat E6.1 cells hence represent only a highly simplified model of early T cell transcriptional responses.

18.
SLAS Discov ; 24(2): 133-141, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30359161

RESUMEN

Eleven-nineteen leukemia (ENL) contains an epigenetic reader domain (YEATS domain) that recognizes lysine acylation on histone 3 and facilitates transcription initiation and elongation through its interactions with the super elongation complex (SEC) and the histone methyl transferase DOT1L. Although it has been known for its role as a fusion protein in mixed lineage leukemia (MLL), overexpression of native ENL, and thus dysregulation of downstream genes in acute myeloid leukemia (AML), has recently been implicated as a driver of disease that is reliant on the epigenetic reader activity of the YEATS domain. We developed a peptide displacement assay (histone 3 tail with acylated lysine) and screened a small-molecule library totaling more than 24,000 compounds for their propensity to disrupt the YEATS domain-histone peptide binding. Among these, we identified a first-in-class dual inhibitor of ENL ( Kd = 745 ± 45 nM) and its paralog AF9 ( Kd = 523 ± 53 nM) and performed "SAR by catalog" with the aim of starting the development of a chemical probe for ENL.


Asunto(s)
Descubrimiento de Drogas , Factores de Elongación Transcripcional/antagonistas & inhibidores , Factores de Elongación Transcripcional/química , Fenómenos Biofísicos , Evaluación Preclínica de Medicamentos , Células HEK293 , Histonas/metabolismo , Humanos , Concentración 50 Inhibidora , Péptidos/metabolismo , Dominios Proteicos , Relación Estructura-Actividad
19.
Nat Commun ; 10(1): 5016, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31676788

RESUMEN

Dissemination of tumour cells to the bone marrow is an early event in breast cancer, however cells may lie dormant for many years before bone metastases develop. Treatment for bone metastases is not curative, therefore new adjuvant therapies which prevent the colonisation of disseminated cells into metastatic lesions are required. There is evidence that cancer stem cells (CSCs) within breast tumours are capable of metastasis, but the mechanism by which these colonise bone is unknown. Here, we establish that bone marrow-derived IL1ß stimulates breast cancer cell colonisation in the bone by inducing intracellular NFkB and CREB signalling in breast cancer cells, leading to autocrine Wnt signalling and CSC colony formation. Importantly, we show that inhibition of this pathway prevents both CSC colony formation in the bone environment, and bone metastasis. These findings establish that targeting IL1ß-NFKB/CREB-Wnt signalling should be considered for adjuvant therapy to prevent breast cancer bone metastasis.


Asunto(s)
Neoplasias Óseas/metabolismo , Neoplasias de la Mama/metabolismo , Interleucina-1beta/metabolismo , Células Madre Neoplásicas/metabolismo , Vía de Señalización Wnt , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/secundario , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Células HEK293 , Humanos , Células MCF-7 , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones Noqueados , Ratones Desnudos , Ratones SCID , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Sulfasalazina/administración & dosificación , Microambiente Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
20.
J Med Chem ; 62(20): 8996-9007, 2019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-31260300

RESUMEN

By screening an epigenetic compound library, we identified that UNC0638, a highly potent inhibitor of the histone methyltransferases G9a and GLP, was a weak inhibitor of SPIN1 (spindlin 1), a methyllysine reader protein. Our optimization of this weak hit resulted in the discovery of a potent, selective, and cell-active SPIN1 inhibitor, compound 3 (MS31). Compound 3 potently inhibited binding of trimethyllysine-containing peptides to SPIN1, displayed high binding affinity, was highly selective for SPIN1 over other epigenetic readers and writers, directly engaged SPIN1 in cells, and was not toxic to nontumorigenic cells. The crystal structure of the SPIN1-compound 3 complex indicated that it selectively binds tudor domain II of SPIN1. We also designed a structurally similar but inactive compound 4 (MS31N) as a negative control. Our results have demonstrated for the first time that potent, selective, and cell-active fragment-like inhibitors can be generated by targeting a single tudor domain.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Descubrimiento de Drogas , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Fosfoproteínas/antagonistas & inhibidores , Quinazolinas/farmacología , Cromatografía Líquida de Alta Presión , Cristalografía por Rayos X , Células HEK293 , Humanos , Estructura Molecular , Espectroscopía de Protones por Resonancia Magnética , Quinazolinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA