Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Stem Cells Transl Med ; 10(7): 1063-1080, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33660952

RESUMEN

To harness the full potential of human pluripotent stem cells (hPSCs) we combined instrumented stirred tank bioreactor (STBR) technology with the power of in silico process modeling to overcome substantial, hPSC-specific hurdles toward their mass production. Perfused suspension culture (3D) of matrix-free hPSC aggregates in STBRs was applied to identify and control process-limiting parameters including pH, dissolved oxygen, glucose and lactate levels, and the obviation of osmolality peaks provoked by high density culture. Media supplements promoted single cell-based process inoculation and hydrodynamic aggregate size control. Wet lab-derived process characteristics enabled predictive in silico modeling as a new rational for hPSC cultivation. Consequently, hPSC line-independent maintenance of exponential cell proliferation was achieved. The strategy yielded 70-fold cell expansion in 7 days achieving an unmatched density of 35 × 106 cells/mL equivalent to 5.25 billion hPSC in 150 mL scale while pluripotency, differentiation potential, and karyotype stability was maintained. In parallel, media requirements were reduced by 75% demonstrating the outstanding increase in efficiency. Minimal input to our in silico model accurately predicts all main process parameters; combined with calculation-controlled hPSC aggregation kinetics, linear process upscaling is also enabled and demonstrated for up to 500 mL scale in an independent bioreactor system. Thus, by merging applied stem cell research with recent knowhow from industrial cell fermentation, a new level of hPSC bioprocessing is revealed fueling their automated production for industrial and therapeutic applications.


Asunto(s)
Técnicas de Cultivo de Célula , Células Madre Pluripotentes , Reactores Biológicos , Diferenciación Celular , Simulación por Computador , Medios de Cultivo , Humanos , Células Madre Pluripotentes/citología
2.
Nat Biotechnol ; 39(6): 737-746, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33558697

RESUMEN

Organoid models of early tissue development have been produced for the intestine, brain, kidney and other organs, but similar approaches for the heart have been lacking. Here we generate complex, highly structured, three-dimensional heart-forming organoids (HFOs) by embedding human pluripotent stem cell aggregates in Matrigel followed by directed cardiac differentiation via biphasic WNT pathway modulation with small molecules. HFOs are composed of a myocardial layer lined by endocardial-like cells and surrounded by septum-transversum-like anlagen; they further contain spatially and molecularly distinct anterior versus posterior foregut endoderm tissues and a vascular network. The architecture of HFOs closely resembles aspects of early native heart anlagen before heart tube formation, which is known to require an interplay with foregut endoderm development. We apply HFOs to study genetic defects in vitro by demonstrating that NKX2.5-knockout HFOs show a phenotype reminiscent of cardiac malformations previously observed in transgenic mice.


Asunto(s)
Corazón/embriología , Intestinos/embriología , Organoides/embriología , Tipificación del Cuerpo , Desarrollo Embrionario , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/genética , Factor Nuclear 4 del Hepatocito/genética , Proteína Homeótica Nkx-2.5/genética , Humanos , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXF/genética , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA