Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Angew Chem Int Ed Engl ; 62(30): e202301920, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37074965

RESUMEN

Elucidating the reaction mechanism in heterogeneous catalysis is critically important for catalyst development, yet remains challenging because of the often unclear nature of the active sites. Using a molecularly defined copper single-atom catalyst supported by a UiO-66 metal-organic framework (Cu/UiO-66) allows a detailed mechanistic elucidation of the CO oxidation reaction. Based on a combination of in situ/operando spectroscopies, kinetic measurements including kinetic isotope effects, and density-functional-theory-based calculations, we identified the active site, reaction intermediates, and transition states of the dominant reaction cycle as well as the changes in oxidation/spin state during reaction. The reaction involves the continuous reactive dissociation of adsorbed O2 , by reaction of O2,ad with COad , leading to the formation of an O atom connecting the Cu center with a neighboring Zr4+ ion as the rate limiting step. This is removed in a second activated step.

2.
Small ; 18(51): e2204767, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36328759

RESUMEN

The discoveries of 2D nanomaterials have made huge impacts on the scientific community. Their unique properties unlock new technologies and bring significant advances to diverse applications. Herein, an unprecedented 2D-stacked material consisting of copper (Cu) on nitro-oxygenated carbon is disclosed. Unlike any known 2D stacked structures that are usually constructed by stacking of separate 2D layers, this material forms a continuously folded 2D-stacked structure. Interestingly, advanced characterizations indicate that Cu atoms inside the structure are in an atomically-dispersed form with extraordinarily high Cu loading up to 15.9 ± 1.2 wt.%, which is among the highest reported metal loading for single-atom catalysts on 2D supports. Facile exfoliation results in thin 2D nanosheets that maximize the exposure of the unique active sites (two neighboring Cu single atoms), leading to impressive catalytic performance, as demonstrated in the electrochemical oxygen reduction reaction.


Asunto(s)
Cobre , Nanoestructuras , Humanos , Carbono , Catálisis , Hipoxia
3.
Inorg Chem ; 58(10): 6584-6587, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-31042020

RESUMEN

The thermal transformation of Cu(NO3)2 and (Fe(NO3)3 into a CuFe2O4 spinel structure in the confined space of SBA-15 has been investigated. Interestingly, we observed the new formation mechanism of CuFe2O4 in SBA-15 via isolated metal ions (Cu2+ and Fe3+) surrounded by oxygen atoms, which gradually transformed to CuO and ferrihydrite. The latter evolved to maghemite spinel ferrite and reacted with CuO to form CuFe2O4 as the final species. In contrast, in the nonconfined space where the spinel was produced via a sol-gel combustion method, the nanostructure of CuFe2O4 immediately formed during the sol-gel combustion process and its crystallinity was improved after calcination. This is the first report on probing-phase formation using high-temperature in situ X-ray absorption fine structure.

4.
Inorg Chem ; 57(21): 13075-13078, 2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30351083

RESUMEN

An unsaturated Mn(II)-centered metal-organic framework was synthesized. The presence of an unsaturated Mn(II) center, together with a guest-responsive structural changing feature, plays a crucial role for strong binding with water, leading to its potential application for water/ethanol separation. In addition, the present framework is thermally stable up to 400 °C, which is beneficial for the regeneration process after adsorption.

5.
J Synchrotron Radiat ; 24(Pt 3): 707-716, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28452765

RESUMEN

The SUT-NANOTEC-SLRI beamline was constructed in 2012 as the flagship of the SUT-NANOTEC-SLRI Joint Research Facility for Synchrotron Utilization, co-established by Suranaree University of Technology (SUT), National Nanotechnology Center (NANOTEC) and Synchrotron Light Research Institute (SLRI). It is an intermediate-energy X-ray absorption spectroscopy (XAS) beamline at SLRI. The beamline delivers an unfocused monochromatic X-ray beam of tunable photon energy (1.25-10 keV). The maximum normal incident beam size is 13 mm (width) × 1 mm (height) with a photon flux of 3 × 108 to 2 × 1010 photons s-1 (100 mA)-1 varying across photon energies. Details of the beamline and XAS instrumentation are described. To demonstrate the beamline performance, K-edge XANES spectra of MgO, Al2O3, S8, FeS, FeSO4, Cu, Cu2O and CuO, and EXAFS spectra of Cu and CuO are presented.

6.
ACS Omega ; 9(6): 6749-6760, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38371817

RESUMEN

Ethylene, a plant hormone, is a gas that plays a crucial role in fruit ripening and senescence. In this work, a novel ethylene scavenger was prepared from amorphous silica-alumina derived from sugar cane bagasse ash (SC-ASA) and used to prolong the shelf life of mango fruits during storage. KMnO4 at 2, 4, or 6 wt %/w was loaded on SC-ASA using an impregnation method. The results showed that 4% w/w KMnO4 loaded on SC-ASA (4KM/SC-ASA) was superior for ethylene removal at an initial ethylene concentration of 400 µL L-1 for 120 min under ambient conditions (25-27 °C and 70-75% relative humidity), resulting in 100% ethylene removal. The kinetic study of ethylene removal showed that the adsorption data were best fitted with a pseudo-first-order kinetic model. The effects of 4KM/SC-ASA as sachets on the quality changes of the mango fruits were investigated, with the results showing that mango fruits packed in cardboard boxes with 4KM/SC-ASA had significantly delayed ripening, low levels of ethylene production, respiration, and weight loss, high fruit firmness, low total soluble solids, and high acidity compared to those of the control treatment. These findings should contribute to developing an ethylene scavenger to extend the shelf life of fruits, reduce the waste of the sugar and ethanol industries, and make it a valuable material.

7.
Bioresour Technol ; 399: 130622, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38518877

RESUMEN

This study presents the development and application of a cellulose acetate phase-inversion membrane for the efficient harvesting of Tetraselmis sp., a promising alternative for aquaculture feedstock. Once fabricated, the cellulose acetate membrane was characterized, and its performance was evaluated through the filtration of Tetraselmis sp. broth. The results demonstrated that the developed membrane exhibited exceptional microalgae harvesting efficiency. It showed a low intrinsic resistance and a high clean water permeability of 1100 L/(m2·h·bar), enabling high-throughput filtration of Tetraselmis sp. culture with a permeability of 400 L/(m2·h·bar) and a volume reduction factor of 2.5 ×. The cellulose acetate -based membrane demonstrated robust filtration performance over a 7-day back concentration filtration with minimum irreversible fouling of only 22.5 % irreversibility even without any cleaning. These results highlighted the potential of cellulose acetate as a versatile base polymer for custom-membrane for microalgae harvesting.


Asunto(s)
Celulosa/análogos & derivados , Chlorophyta , Microalgas , Filtración , Polímeros
8.
Chem Commun (Camb) ; 60(37): 4890-4893, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38546200

RESUMEN

Highly robust Zr-based MOF-808, featuring Lewis acid Zr sites and coordinate hydroxide ions upon the removal of the monocarboxylate capping reagent, emerges as an efficient catalyst for the hydrothermal conversion of glucose into lactic acid. A remarkable 99% glucose conversion with an impressive 76.6% yield of lactic acid can be achieved. The large pore window of MOF-808 facilitates the diffusion of glucose to the active sites within the framework. The single-site attribute of the catalytic center enables a high selectivity of lactic acid over the competitive product, 5-(hydroxymethyl)furfural, under hydrothermal reaction conditions.

9.
Nanoscale ; 16(2): 678-690, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37964613

RESUMEN

Manganese dioxide, ß-MnO2, has shown potential in catalyzing the oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA), a monomer of bioplastic polyethylene furanoate (PEF). Herein, the insight into the hydroxy (OH) and surface oxygen effects on the HMF-to-FDCA reaction over ß-MnO2 is clarified through a comprehensive investigation using density functional theory (DFT) calculations, microkinetic modeling, and experiment. Theoretical analyses revealed that both active surface oxygen and OH species (from either base or solvent) facilitate C-H bond breaking and OH insertion, promoting the catalytic activity of ß-MnO2. Microkinetic modeling demonstrated that the FFCA-to-FDCA and DFF-to-FFCA steps are the rate-limiting steps of the hydroxylated and non-hydroxylated surfaces, respectively. These theoretical results agree well with the experiment when water and dimethyl sulfoxide (DMSO) were used as solvents. In addition, the synthesized ß-MnO2 catalyst showed high stability and activity, maintaining stable HMF conversion (≥99 mol%) and high FDCA yield (85-92 mol%) during continuous flow oxidation for 72 hours at pO2 of 1 MPa, 393 K and LHSV of 1 h-1. Thus, considering both hydroxy and surface oxygen species is a new strategy for enhancing the catalytic activity of Mn oxides and other metal oxide catalysts for the HMF-to-FDCA reaction.

10.
ACS Appl Mater Interfaces ; 16(8): 10227-10237, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38367256

RESUMEN

Single-atom catalysts (SACs) possess the potential to involve the merits of both homogeneous and heterogeneous catalysts altogether and thus have gained considerable attention. However, the large-scale synthesis of SACs with rich isolate-metal sites by simple and low-cost strategies has remained challenging. In this work, we report a facile one-step pyrolysis that automatically produces SACs with high metal loading (5.2-15.9 wt %) supported on two-dimensional nitro-oxygenated carbon (M1-2D-NOC) without using any solvents and sacrificial templates. The method is also generic to various transition metals and can be scaled up to several grams based on the capacity of the containers and furnaces. The high density of active sites with N/O coordination geometry endows them with impressive catalytic activities and stability, as demonstrated in the oxygen reduction reaction (ORR). For example, Fe1-2D-NOC exhibits an onset potential of 0.985 V vs RHE, a half-wave potential of 0.826 V, and a Tafel slope of -40.860 mV/dec. Combining the theoretical and experimental studies, the high ORR activity could be attributed its unique FeO-N3O structure, which facilitates effective charge transfer between the surface and the intermediates along the reaction, and uniform dispersion of this active site on thin 2D nanocarbon supports that maximize the exposure to the reactants.

11.
ACS Omega ; 8(48): 45428-45437, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38075808

RESUMEN

This work explored the use of biomass-derived cellulose nanofibers as an additive to enhance the separation performance of Pebax membranes for the removal of CO2 from biogas. Succinate functional groups were modified on the cellulose nanofiber (SCNF) to incorporate more CO2-attracting functional groups before they were added to the polymer matrix. A small addition of SCNF up to 0.5 wt % had no significant impact on the polymer chain packing of Pebax but significantly enhanced the tensile strength and separation performance in both CO2 permeability and CO2/CH4 selectivity. On the other hand, increasing the SCNF addition amount above 1 wt % resulted in a slight alternation of membrane microstructure, i.e., lowering crystallinity, stiffer structure, and reduced tensile strength. At high loading, the CO2 permeability and CO2/CH4 selectivity of the composite membrane were, however, found to decline. This behavior is explained by a greater propensity for interaction among the CO2-attracting functional groups of SCNF and Pebax at elevated SCNF loadings, leading to fewer functional groups available for CO2 sorption. The optimal 0.5% SCNF loading (Pebax/SCNF-0.5) demonstrated a CO2 permeability of 263.8 Barrer and selectivity of 19.9 under 4 bar pressure and an operating temperature of 30 °C. These separation performances increased by 29.69% permeability and 39.04% selectivity compared with those of pure Pebax. These highly impressive results corresponded to the increases in the levels of CO2 dissolution and diffusion via hydrophilic SCNF nanofillers in Pebax. This work could strongly advance the research and development of gas separation technology based on polymeric membranes with the utilization of biobased nanofillers for energy and environmental sectors.

12.
Heliyon ; 9(8): e18772, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37576328

RESUMEN

Zeolite has become a promising material that can potentially play a pivotal role in resolving environmental crises. Among zeolite families, MCM-22 zeolite shows outstanding intrinsic properties associated with the topology and porous structure, offering ion-exchange advantages for catalytic activity processes. The synthesis of MCM-22 zeolite becomes challenging when concerning the cost and catalytic performance. To overcome this bottleneck, we demonstrate a sustainable route of a hydrothermal process using natural resources as starting materials. Rice husk from agricultural waste was used as a silica source while natural clays (kaolin and bentonite) were applied as alumina sources. The products from natural sources were compared with the use of commercial starting materials, e.g., NaAlO2 (for alumina) and Na2SiO3 and TEOS (for silica), in points of crystal, compositional, and morphological views. We showed that the high purity of MCM-22 zeolite can be obtained from rice husk silica (RHS) and aluminosilicate gel (ASG) extracted from kaolin, while the use of ASG extracted from bentonite tended to be unsuitable to generate the zeolite formation. We also studied the effects of reaction time and the ratio of RHS/ASG on the crystallinity and surface area of MCM-22. The architecture and acidity of an optimal product were explored by Nuclear magnetic resonance spectroscopy and Temperature-programmed desorption of ammonia, demonstrating the success of achieving well acidity.

13.
Sci Rep ; 13(1): 15311, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37714873

RESUMEN

Cigarette smoke contains many chemicals, including nicotine, which is harmful and can cause health problems such as carcinogenesis disease, cardiovascular, respiratory, renal, and reproductive systems. Removal of nicotine from mainstream smoke can be done through adsorption with filters or solid adsorbents. In this study, we explored the use of activated carbons for the removal of nicotine from cigarette mainstream smoke. Activated carbons were prepared from dried hemp (Cannabis sativa) stem at an activation temperature of 350-550 °C using phosphoric acid as an activating agent. The results showed that the activated carbons with variable surface functional groups and porosity exhibited high efficiency for nicotine adsorption, removing 68-88% of nicotine from cigarette mainstream smoke. Through X-ray photoelectron spectroscopy and temperature-programmed desorption analyses, we identified that oxygen-containing functional groups, particularly carboxylic groups, exhibited a superior ability to adsorb nicotine. The computational analysis with DFT simulations further supported the importance of oxygen-containing surface functional groups in facilitating nicotine adsorption, with the carboxylic group providing the lowest adsorption energy among other functional groups.


Asunto(s)
Fumar Cigarrillos , Nicotina , Humanos , Adsorción , Carcinogénesis , Carbón Orgánico , Oxígeno
14.
ACS Omega ; 8(19): 17134-17142, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37214707

RESUMEN

Regenerated cellulose (RC) produced from waste pineapple leaves was used to develop a colorimetric sensor as a Cu-PAN sheet (RCS). Microcrystalline cellulose derived from dried pineapple leaves was combined with Cu-PAN, dissolved in NaOH and urea, and made into an RC sheet using Na2SO4 as a coagulant. The RCS was used as an H2S indicator at various H2S concentrations (0-50 ppm) and temperatures (5-25 °C). The RCS color changed from purple to New York pink when exposed to H2S. A colorimeter method was used to develop prediction curves with values of R2 > 0.95 for H2S concentrations at 5-25 °C. The physicochemical properties of fresh and spent RCS were characterized using various techniques (Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy/energy-dispersive X-ray spectroscopy, and thermogravimetric analysis). In addition, when stored at 5 and 25 °C for 90 days, the RCS had outstanding stability. The developed RCS could be applied to food packaging as an intelligent indicator of meat spoilage.

15.
Carbohydr Res ; 534: 108971, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37862856

RESUMEN

This study presents a method for solvent-free mechanochemical synthesis of chitosan from chitin, sourced from the shells of mud crabs (Scylla serrata). The procedure involves a sequence of demineralization and deproteinization to extract chitin from the crab shells, followed by mechanochemical deacetylation. The chitin was deacetylated by grinding it as a solid blend with sodium hydroxide (NaOH) using a stainless steel mortar and pestle. After grinding, chitosan is isolated from the blend by repetitive washing and centrifugation. The chitosan product is then characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction analysis. These characterization techniques confirm the successful deacetylation of chitin to form chitosan. A high degree of deacetylation (DD) is achieved when the weight ratio of NaOH to chitin is 1:1 or higher, implying that the DD value can be enhanced by increasing this weight ratio. The mechanochemical reaction mechanism involves the hydroxyl groups on the NaOH particles reacting with the acetamide groups of the chitin strands, yielding solid chitosan and sodium acetate. This mechanochemical deacetylation approach is more practical than the conventional heterogeneous deacetylation in strong basic solutions, since it could suppress depolymerization of the resulting chitosan and requires significantly less base. This makes it a promising method for large-scale industrial applications.


Asunto(s)
Braquiuros , Quitosano , Animales , Quitosano/química , Quitina/química , Hidróxido de Sodio/química , Espectroscopía Infrarroja por Transformada de Fourier
16.
Chempluschem ; 88(11): e202300326, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37786294

RESUMEN

5-Hydroxymethylfurfural (5-HMF) synthesized through glucose conversion requires Lewis acid (L) site for isomerization and Brønsted acid (B) site for dehydration. The objective of this work is to investigate the influence of the metal type of Al-SBA-15-supported phosphates of Cr, Zr, Nb, Sr, and Sn on glucose conversion to 5-HMF in a NaCl-H2 O/n-butanol biphasic solvent system. The structural and acid property of all supported metal phosphate samples were fully verified by several spectroscopic methods. Among those catalysts, CrPO/Al-SBA-15 provided the best performance with the highest glucose conversion and 5-HMF yield, corresponding to the highest total acidity of 0.65 mmol/g and optimal L/B ratio of 1.88. For CrPO/Al-SBA-15, another critical parameter is the phosphate-to-chromium ratio. Moreover, DFT simulation of glucose conversion to 5-HMF on the surface of the optimized chromium phosphate structure reveals three steps of fructose dehydration on the Brønsted acid site. Finally, the optimum reaction condition, reusability, and leaching test of the best catalyst were determined. CrPO/Al-SBA-15 is a promising catalyst for glucose conversion to high-value-added chemicals in future biorefinery production.

17.
ACS Appl Bio Mater ; 6(10): 4240-4249, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37756496

RESUMEN

Functionalization of thymol (Thy) on nanocarriers is a key step in achieving prolonged antimicrobial activity. This requires nanomaterials with uniform particle diameters and suitable thymol sorption. Herein, hollow carbon (HC) and SiO2-carbon core-shell (SiO2@C) were investigated due to their diverse morphologies and ease of surface modification. HC (14 ± 1 nm size) and SiO2@C (10 ± 1.5 nm size) were synthesized by the Stöber method before thymol was loaded by incipient wetness impregnation. Nanoparticle physicochemical properties were characterized by advanced techniques, including X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS). Adsorption energies of thymol on the carbon and SiO2 surfaces were elucidated by density functional theory (DFT) simulations. Moreover, the in vitro thymol release profiles and antibacterial activity were evaluated. The experimental results indicated that the oxy-carbon surface species of HC led to longer thymol release profiles than the -OH group of SiO2@C. The DFT calculations revealed that the weaker physical interaction of thymol on HC was better for drug release than that on SiO2@C. Thus, a longer thymol release profile of HC with hollow structures showed better antibacterial performance against Gram-positive bacteria Staphylococcus aureus than that of SiO2@C with core-shell structures. This work confirms the important role of carbon morphology and specific functional groups in thymol release profiles for the further development of inhibition products.


Asunto(s)
Nanosferas , Timol , Timol/farmacología , Timol/química , Dióxido de Silicio/química , Adsorción , Carbono , Antibacterianos/farmacología , Antibacterianos/química
18.
ACS Appl Mater Interfaces ; 15(22): 26700-26709, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37218929

RESUMEN

Catalytic partial oxidation of methane presents a promising route to convert the abundant but environmentally undesired methane gas to liquid methanol with applications as an energy carrier and a platform chemical. However, an outstanding challenge for this process remains in developing a catalyst that can oxidize methane selectively to methanol with good activity under continuous flow conditions in the gas phase using O2 as an oxidant. Here, we report a Fe catalyst supported by a metal-organic framework (MOF), Fe/UiO-66, for the selective and on-stream partial oxidation of methane to methanol. Kinetic studies indicate the continuous production of methanol at a superior reaction rate of 5.9 × 10-2 µmolMeOH gFe-1 s-1 at 180 °C and high selectivity toward methanol, with the catalytic turnover verified by transient methane isotopic measurements. Through an array of spectroscopic characterizations, electron-deficient Fe species rendered by the MOF support is identified as the probable active site for the reaction.

19.
ChemSusChem ; 15(5): e202102653, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-34982851

RESUMEN

Determining the roles of surface functionality of heterogeneous acid catalysts is important for many industrial catalysts. In this study, the decisive structure of metal-organic frameworks (MOFs) is utilized to identify important features for the effective conversion of d-xylose into lactic acid. Several acidic MOFs are tested and the combination of Lewis acidity and adjacent hydroxy sites is found to be critical to attain high lactic acid yields. This hypothesis is corroborated experimentally by modification of the MOF to increase such sites, which affords an enhanced lactic acid yield of 79 %, and investigation of the acidity by using in situ FTIR spectroscopy. Density functional theory calculations disclose the cooperative behavior of Lewis acid sites and hydroxy groups in promoting the Cannizzaro reaction, a key step in the production of lactic acid.


Asunto(s)
Estructuras Metalorgánicas , Catálisis , Dominio Catalítico , Ácido Láctico , Estructuras Metalorgánicas/química , Xilosa
20.
Polymers (Basel) ; 15(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36616452

RESUMEN

Due to their interfacial defects between inorganic fillers and polymer matrices, research into mixed matrix membranes (MMMs) is challenging. In the application of CO2 separation, these defects can potentially jeopardize the performance of membranes. In this study, aminosilane functionalization is employed to improve the nano-sized zeolite Y (ZeY) particle dispersion and adhesion in polyether block amide (Pebax). The performance of CO2/CH4 separation of Pebax mixed matrix composite hollow fiber membranes, incorporated with ZeY and aminosilane-modified zeolite Y (Mo-ZeY), is investigated. The addition of the zeolite filler at a small loading at 5 wt.% has a positive impact on both gas permeability and separation factor. Due to the CO2-facilitated transport effect, the performance of MMMs is further improved by the amino-functional groups modified on the ZeY. When 5 wt.% of Mo-ZeY is incorporated, the gas permeability and CO2/CH4 separation factor of the Pebax membrane are enhanced by over 100% and 35%, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA