Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Cell Sci ; 134(2)2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33495358

RESUMEN

Upon activation by different transmembrane receptors, the same signaling protein can induce distinct cellular responses. A way to decipher the mechanisms of such pleiotropic signaling activity is to directly manipulate the decision-making activity that supports the selection between distinct cellular responses. We developed an optogenetic probe (optoSRC) to control SRC signaling, an example of a pleiotropic signaling node, and we demonstrated its ability to generate different acto-adhesive structures (lamellipodia or invadosomes) upon distinct spatio-temporal control of SRC kinase activity. The occurrence of each acto-adhesive structure was simply dictated by the dynamics of optoSRC nanoclusters in adhesive sites, which were dependent on the SH3 and Unique domains of the protein. The different decision-making events regulated by optoSRC dynamics induced distinct downstream signaling pathways, which we characterized using time-resolved proteomic and network analyses. Collectively, by manipulating the molecular mobility of SRC kinase activity, these experiments reveal the pleiotropy-encoding mechanism of SRC signaling.


Asunto(s)
Citoesqueleto , Proteómica , Transducción de Señal , Familia-src Quinasas , Animales , Células Cultivadas , Simulación de Dinámica Molecular , Fosforilación , Dominios Homologos src , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
2.
FASEB J ; 36(12): e22629, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36349990

RESUMEN

ß1 integrins are important in blood vessel formation and function, finely tuning the adhesion of endothelial cells to each other and to the extracellular matrix. The role of integrins in the vascular disease, cerebral cavernous malformation (CCM) has yet to be explored in vivo. Endothelial loss of the gene KRIT1 leads to brain microvascular defects, resulting in debilitating and often fatal consequences. We tested administration of a monoclonal antibody that enforces the active ß1 integrin conformation, (clone 9EG7), on a murine neonatal CCM mouse model, Krit1flox/flox ;Pdgfb-iCreERT2 (Krit1ECKO ), and on KRIT1-silenced human umbilical vein endothelial cells (HUVECs). In addition, endothelial deletion of the master regulator of integrin activation, Talin 1 (Tln1), in Krit1ECKO mice was performed to assess the effect of completely blocking endothelial integrin activation on CCM. Treatment with 9EG7 reduced lesion burden in the Krit1ECKO model and was accompanied by a strong reduction in the phosphorylation of the ROCK substrate, myosin light chain (pMLC), in both retina and brain endothelial cells. Treatment of KRIT1-silenced HUVECs with 9EG7 in vitro stabilized cell-cell junctions. Overnight treatment of HUVECs with 9EG7 resulted in significantly reduced total surface expression of ß1 integrin, which was associated with reduced pMLC levels, supporting our in vivo findings. Genetic blockade of integrin activation by Tln1ECKO enhanced bleeding and did not reduce CCM lesion burden in Krit1ECKO mice. In sum, targeting ß1 integrin with an activated-specific antibody reduces acute murine CCM lesion development, which we found to be associated with suppression of endothelial ROCK activity.


Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Animales , Humanos , Ratones , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Integrina beta1/metabolismo , Anticuerpos Monoclonales/metabolismo , Integrinas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo
3.
Angiogenesis ; 24(4): 843-860, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34342749

RESUMEN

Cerebral cavernous malformation (CCM) is a cerebrovascular disease in which stacks of dilated haemorrhagic capillaries form focally in the brain. Whether and how defective mechanotransduction, cellular mosaicism and inflammation interplay to sustain the progression of CCM disease is unknown. Here, we reveal that CCM1- and CCM2-silenced endothelial cells expanded in vitro enter into senescence-associated secretory phenotype (SASP) that they use to invade the extracellular matrix and attract surrounding wild-type endothelial and immune cells. Further, we demonstrate that this SASP is driven by the cytoskeletal, molecular and transcriptomic disorders provoked by ROCK dysfunctions. By this, we propose that CCM2 and ROCK could be parts of a scaffold controlling senescence, bringing new insights into the emerging field of the control of ageing by cellular mechanics. These in vitro findings reconcile the known dysregulated traits of CCM2-deficient endothelial cells into a unique endothelial fate. Based on these in vitro results, we propose that a SASP could link the increased ROCK-dependent cell contractility in CCM2-deficient endothelial cells with microenvironment remodelling and long-range chemo-attraction of endothelial and immune cells.


Asunto(s)
Células Endoteliales , Hemangioma Cavernoso del Sistema Nervioso Central , Proteínas Portadoras/genética , Células Endoteliales/metabolismo , Humanos , Mecanotransducción Celular , Fenotipo , Fenotipo Secretor Asociado a la Senescencia , Microambiente Tumoral
4.
J Cell Sci ; 131(15)2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-30030370

RESUMEN

Endothelial integrity relies on a mechanical crosstalk between intercellular and cell-matrix interactions. This crosstalk is compromised in hemorrhagic vascular lesions of patients carrying loss-of-function mutations in cerebral cavernous malformation (CCM) genes. RhoA/ROCK-dependent cytoskeletal remodeling is central to the disease, as it causes unbalanced cell adhesion towards increased cell-extracellular matrix adhesions and destabilized cell-cell junctions. This study reveals that CCM proteins directly orchestrate ROCK1 and ROCK2 complementary roles on the mechanics of the endothelium. CCM proteins act as a scaffold, promoting ROCK2 interactions with VE-cadherin and limiting ROCK1 kinase activity. Loss of CCM1 (also known as KRIT1) produces excessive ROCK1-dependent actin stress fibers and destabilizes intercellular junctions. Silencing of ROCK1 but not ROCK2 restores the adhesive and mechanical homeostasis of CCM1 and CCM2-depleted endothelial monolayers, and rescues the cardiovascular defects of ccm1 mutant zebrafish embryos. Conversely, knocking down Rock2 but not Rock1 in wild-type zebrafish embryos generates defects reminiscent of the ccm1 mutant phenotypes. Our study uncovers the role of the CCM1-CCM2 complex in controlling ROCK1 and ROCK2 to preserve endothelial integrity and drive heart morphogenesis. Moreover, it solely identifies the ROCK1 isoform as a potential therapeutic target for the CCM disease.


Asunto(s)
Proteínas Portadoras/metabolismo , Células Endoteliales/metabolismo , Proteína KRIT1/metabolismo , Quinasas Asociadas a rho/metabolismo , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Western Blotting , Cadherinas/genética , Cadherinas/metabolismo , Proteínas Portadoras/genética , Bovinos , Células Endoteliales/citología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inmunoprecipitación , Proteína KRIT1/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Pez Cebra , Quinasas Asociadas a rho/genética
5.
J Cell Sci ; 130(3): 626-636, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28049720

RESUMEN

Cell migration is a complex process requiring density and rigidity sensing of the microenvironment to adapt cell migratory speed through focal adhesion and actin cytoskeleton regulation. ICAP-1 (also known as ITGB1BP1), a ß1 integrin partner, is essential for ensuring integrin activation cycle and focal adhesion formation. We show that ICAP-1 is monoubiquitylated by Smurf1, preventing ICAP-1 binding to ß1 integrin. The non-ubiquitylatable form of ICAP-1 modifies ß1 integrin focal adhesion organization and interferes with fibronectin density sensing. ICAP-1 is also required for adapting cell migration in response to substrate stiffness in a ß1-integrin-independent manner. ICAP-1 monoubiquitylation regulates rigidity sensing by increasing MRCKα (also known as CDC42BPA)-dependent cell contractility through myosin phosphorylation independently of substrate rigidity. We provide evidence that ICAP-1 monoubiquitylation helps in switching from ROCK2-mediated to MRCKα-mediated cell contractility. ICAP-1 monoubiquitylation serves as a molecular switch to coordinate extracellular matrix density and rigidity sensing thus acting as a crucial modulator of cell migration and mechanosensing.


Asunto(s)
Movimiento Celular , Matriz Extracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteína Quinasa de Distrofia Miotónica/metabolismo , Ubiquitinación , Quinasas Asociadas a rho/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Sitios de Unión , Fenómenos Biomecánicos , Adhesión Celular , Línea Celular , Fibronectinas/metabolismo , Adhesiones Focales/metabolismo , Humanos , Integrina beta1/química , Integrina beta1/metabolismo , Ratones , Modelos Biológicos , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo
6.
Development ; 141(10): 2096-107, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24803656

RESUMEN

The four related mammalian MEX-3 RNA-binding proteins are evolutionarily conserved molecules for which the in vivo functions have not yet been fully characterized. Here, we report that male mice deficient for the gene encoding Mex3b are subfertile. Seminiferous tubules of Mex3b-deficient mice are obstructed as a consequence of the disrupted phagocytic capacity of somatic Sertoli cells. In addition, both the formation and the integrity of the blood-testis barrier are compromised owing to mislocalization of N-cadherin and connexin 43 at the surface of Sertoli cells. We further establish that Mex3b acts to regulate the cortical level of activated Rap1, a small G protein controlling phagocytosis and cell-cell interaction, through the activation and transport of Rap1GAP. The active form of Rap1 (Rap1-GTP) is abnormally increased at the membrane cortex and chemically restoring Rap1-GTP to physiological levels rescues the phagocytic and adhesion abilities of Sertoli cells. Overall, these findings implicate Mex3b in the spatial organization of the Rap1 pathway that orchestrates Sertoli cell functions.


Asunto(s)
Proteínas de Unión al ARN/fisiología , Células de Sertoli/fisiología , Proteínas de Unión al GTP rap1/metabolismo , Animales , Células Cultivadas , Embrión de Mamíferos , Femenino , Humanos , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas de Unión al ARN/genética , Epitelio Seminífero/metabolismo , Células de Sertoli/metabolismo , Transducción de Señal , Distribución Tisular/genética , Proteínas de Unión al GTP rap1/genética
7.
Curr Opin Oncol ; 27(1): 64-70, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25415136

RESUMEN

PURPOSE OF REVIEW: Much effort has been devoted to determining how cellular and noncellular components of the tumoral niche initiate and promote cancer development. Cancer cells perceive biochemical signals from components of the extracellular matrix (ECM) and sense physical features, such as matrix stiffness and cell confinement. The past decade has seen a better understanding of the biophysics and mechanobiology associated with cancer cells. Indeed, loss of mechanisms controlling the production, the degradation, and the remodeling of ECM contributes to tumor growth or cell dissemination by affecting cell contractility in response to ECM stiffness and by stimulating mechanical dependence of growth factor activation. RESULTS: Cell plasticity allows adaptative strategies for cancer cells to survive or eventually escape from tumoral environment through modification of the microenvironment-cell interface, internal tension increase, and nuclear deformation partly leading to intratumoral heterogeneity. However, although alteration of the biomechanical properties of the ECM are sufficient to promote cell migration and invasion in cancer cells, this microenvironment can also provide a hospitable niche for tumor dormancy and resistance to cancer therapy. CONCLUSION: The review will focus on how physicochemical properties of ECM might promote tumor growth or cell dissemination or on the contrary maintain quiescent state of cancer cells. It is crucial to clarify the molecular basis of mechanotransduction in the development and progression of tumors to identify new potential biomarkers and anticancer therapeutic targets.


Asunto(s)
Elasticidad/fisiología , Matriz Extracelular/fisiología , Mecanotransducción Celular/fisiología , Neoplasias/fisiopatología , Microambiente Tumoral/fisiología , Progresión de la Enfermedad , Humanos , Invasividad Neoplásica/fisiopatología
9.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119534, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37399908

RESUMEN

Necroptosis, a cell death modality that is defined as a necrosis-like cell death depending on the receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like pseudokinase (MLKL), has been found to underlie the injury of various organs. Nevertheless, the molecular background of this cell loss seems to also involve, at least under certain circumstances, some novel axes, such as RIPK3-PGAM5-Drp1 (mitochondrial protein phosphatase 5-dynamin-related protein 1), RIPK3-CaMKII (Ca2+/calmodulin-dependent protein kinase II) and RIPK3-JNK-BNIP3 (c-Jun N-terminal kinase-BCL2 Interacting Protein 3). In addition, endoplasmic reticulum stress and oxidative stress via the higher production of reactive oxygen species produced by the mitochondrial enzymes and the enzymes of the plasma membrane have been implicated in necroptosis, thereby depicting an inter-organelle interplay in the mechanisms of this cell death. However, the role and relationship between these novel non-conventional signalling and the well-accepted canonical pathway in terms of tissue- and/or disease-specific prioritisation is completely unknown. In this review, we provide current knowledge on some necroptotic pathways being not directly associated with RIPK3-MLKL execution and report studies showing the role of respective microRNAs in the regulation of necroptotic injury in the heart and in some other tissues having a high expression of the pro-necroptotic proteins.


Asunto(s)
Necroptosis , Proteínas Quinasas , Humanos , Necroptosis/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Necrosis , Muerte Celular/genética , Orgánulos/metabolismo
10.
Sci Rep ; 13(1): 5572, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37019926

RESUMEN

The capillary-venous pathology cerebral cavernous malformation (CCM) is caused by loss of CCM1/Krev interaction trapped protein 1 (KRIT1), CCM2/MGC4607, or CCM3/PDCD10 in some endothelial cells. Mutations of CCM genes within the brain vasculature can lead to recurrent cerebral hemorrhages. Pharmacological treatment options are urgently needed when lesions are located in deeply-seated and in-operable regions of the central nervous system. Previous pharmacological suppression screens in disease models of CCM led to the discovery that treatment with retinoic acid improved CCM phenotypes. This finding raised a need to investigate the involvement of retinoic acid in CCM and test whether it has a curative effect in preclinical mouse models. Here, we show that components of the retinoic acid synthesis and degradation pathway are transcriptionally misregulated across disease models of CCM. We complemented this analysis by pharmacologically modifying retinoic acid levels in zebrafish and human endothelial cell models of CCM, and in acute and chronic mouse models of CCM. Our pharmacological intervention studies in CCM2-depleted human umbilical vein endothelial cells (HUVECs) and krit1 mutant zebrafish showed positive effects when retinoic acid levels were increased. However, therapeutic approaches to prevent the development of vascular lesions in adult chronic murine models of CCM were drug regiment-sensitive, possibly due to adverse developmental effects of this hormone. A treatment with high doses of retinoic acid even worsened CCM lesions in an adult chronic murine model of CCM. This study provides evidence that retinoic acid signaling is impaired in the CCM pathophysiology and suggests that modification of retinoic acid levels can alleviate CCM phenotypes.


Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Adulto , Humanos , Animales , Ratones , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Pez Cebra/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Encéfalo/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo
11.
Mol Biol Cell ; 32(18): 1724-1736, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34081532

RESUMEN

The vascular system is precisely regulated to adjust blood flow to organismal demand, thereby guaranteeing adequate perfusion under varying physiological conditions. Mechanical forces, such as cyclic circumferential stretch, are among the critical stimuli that dynamically adjust vessel distribution and diameter, but the precise mechanisms of adaptation to changing forces are unclear. We find that endothelial monolayers respond to cyclic stretch by transient remodeling of the vascular endothelial cadherin-based adherens junctions and the associated actomyosin cytoskeleton. Time-resolved proteomic profiling reveals that this remodeling is driven by calcium influx through the mechanosensitive Piezo1 channel, triggering Rho activation to increase actomyosin contraction. As the mechanical stimulus persists, calcium signaling is attenuated through transient down-regulation of Piezo1 protein. At the same time, filamins are phosphorylated to increase monolayer stiffness, allowing mechanoadaptation to restore junctional integrity despite continuing exposure to stretch. Collectively, this study identifies a biphasic response to cyclic stretch, consisting of an initial calcium-driven junctional mechanoresponse, followed by mechanoadaptation facilitated by monolayer stiffening.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actomiosina , Antígenos CD/metabolismo , Cadherinas/metabolismo , Señalización del Calcio , Mecanotransducción Celular , Actomiosina/metabolismo , Uniones Adherentes/fisiología , Antígenos CD/genética , Fenómenos Biomecánicos , Cadherinas/genética , Calcimicina/farmacología , Ionóforos de Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Citocalasina D/farmacología , Filaminas/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Canales Iónicos/genética , Canales Iónicos/metabolismo , Fosfoproteínas/análisis , Fosfoproteínas/metabolismo , Mapas de Interacción de Proteínas , Quinasas p21 Activadas/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
12.
J Clin Invest ; 131(5)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33465054

RESUMEN

Group B Streptococcus (GBS) is the major cause of human neonatal infections. A single clone, designated CC17-GBS, accounts for more than 80% of meningitis cases, the most severe form of the infection. However, the events allowing blood-borne GBS to penetrate the brain remain largely elusive. In this study, we identified the host transmembrane receptors α5ß1 and αvß3 integrins as the ligands of Srr2, a major CC17-GBS-specific adhesin. Two motifs located in the binding region of Srr2 were responsible for the interaction between CC17-GBS and these integrins. We demonstrated in a blood-brain-barrier cellular model that both integrins contributed to the adhesion and internalization of CC17-GBS. Strikingly, both integrins were overexpressed during the postnatal period in the brain vessels of the blood-brain barrier and blood-cerebrospinal fluid barrier and contributed to juvenile susceptibility to CC17 meningitis. Finally, blocking these integrins decreased the ability of CC17-GBS to cross into the CNS of juvenile mice in an in vivo model of meningitis. Our study demonstrated that CC17-GBS exploits integrins in order to cross the brain vessels, leading to meningitis. Importantly, it provides host molecular insights into neonate's susceptibility to CC17-GBS meningitis, thereby opening new perspectives for therapeutic and prevention strategies of GBS-elicited meningitis.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Barrera Hematoencefálica/metabolismo , Integrina alfaVbeta3/metabolismo , Meningitis Bacterianas/metabolismo , Receptores de Vitronectina/metabolismo , Infecciones Estreptocócicas/metabolismo , Streptococcus agalactiae/metabolismo , Adhesinas Bacterianas/genética , Animales , Animales Recién Nacidos , Adhesión Bacteriana/genética , Barrera Hematoencefálica/microbiología , Línea Celular , Humanos , Integrina alfaVbeta3/genética , Meningitis Bacterianas/genética , Ratas , Receptores de Vitronectina/genética , Infecciones Estreptocócicas/genética , Streptococcus agalactiae/genética
13.
Methods Mol Biol ; 2152: 401-416, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32524568

RESUMEN

Endothelial cells lining cerebral cavernous malformations (CCM) present strong adhesive and mechanical defects. Increased cell contractility is a driver to the onset and the expansion of the CCM lesions. 2D in vitro endothelial models have been developed from either endothelial cells isolated from ccm1-3 knock-out mice or CCM1-3-silenced primary endothelial cells. These in vitro models faithfully recapitulate the adhesive and contractile defects of the CCM-deficient endothelial cells such as increased cell-extracellular matrix (ECM) adhesion through ß1 integrin-anchored actin stress fibers, abnormal remodeling of the ECM, and destabilized VE-cadherin-dependent cell-cell junctions. Using such 2D in vitro CCM models, we have shown that the ECM remodeled by CCM-depleted endothelial cells can propagate CCM-like adhesive defects to wild-type endothelial cells, a process potentially pertinent to CCM lesion expansion. Here, we detail methods for studying the morphology of focal adhesions, actomyosin cytoskeleton, and VE-cadherin-dependent Adherens junctions by immunofluorescence and morphometric analyses. Moreover, we detail the protocols to produce and purify remodeled ECM and to test its effect on endothelial cell adhesion.


Asunto(s)
Comunicación Celular , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Matriz Extracelular/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/etiología , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Uniones Adherentes/metabolismo , Animales , Biomarcadores , Adhesión Celular , Citoesqueleto/metabolismo , Técnica del Anticuerpo Fluorescente , Adhesiones Focales/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Uniones Intercelulares/metabolismo , Mecanotransducción Celular , Modelos Biológicos
14.
Oncogene ; 38(7): 1050-1066, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30194450

RESUMEN

Vascular endothelial growth factor-A (VEGF-A) is highly subjected to alternative pre-mRNA splicing that generates several splice variants. The VEGFxxx and VEGFxxxb families encode splice variants of VEGF-A that differ only at the level of six amino acids in their C-terminal part. The expression level of VEGFxxx splice variants and their function as pro-angiogenic factors during tumor neo-angiogenesis have been well-described. The role of VEGFxxxb isoforms is less well known, but they have been shown to inhibit VEGFxxx-mediated angiogenesis, while being partial or weak activators of VEGFR receptors in endothelial cells. On the opposite, their role on tumor cells expressing VEGFRs at their surface remains largely unknown. In this study, we find elevated levels of VEGF165b, the main VEGFxxxb isoform, in 36% of non-small cell lung carcinoma (NSCLC), mainly lung adenocarcinoma (46%), and show that a high VEGF165b/VEGF165 ratio correlates with the presence of lymph node metastases. At the molecular level, we demonstrate that VEGF165b stimulates proliferation and invasiveness of two lung tumor cell lines through a VEGFR/ß1 integrin loop. We further provide evidence that the isoform-specific knockdown of VEGF165b reduces tumor growth, demonstrating a tumor-promoting autocrine role for VEGF165b in lung cancer cells. Importantly, we show that bevacizumab, an anti-angiogenic compound used for the treatment of lung adenocarcinoma patients, increases the expression of VEGF165b and activates the invasive VEGFR/ß1 integrin loop. Overall, these data highlight an unexpected role of the VEGF165b splice variant in the progression of lung tumors and their response to anti-angiogenic therapies.


Asunto(s)
Empalme Alternativo , Comunicación Autocrina/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Integrina beta1/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Neovascularización Patológica/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Inhibidores de la Angiogénesis/farmacología , Bevacizumab/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Femenino , Humanos , Integrina beta1/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Proteínas de Neoplasias/genética , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular/genética , Transducción de Señal/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/genética
15.
Eur J Cell Biol ; 87(8-9): 491-506, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18417250

RESUMEN

Cell-matrix adhesions are essential for cell migration, tissue organization and differentiation, therefore playing central roles in embryonic development, remodeling and homeostasis of tissues and organs. Matrix adhesion-dependent signals cooperate with other pathways to regulate biological functions such as cell survival, cell proliferation, wound healing, and tumorigenesis. Cell migration and invasion are integrated processes requiring the continuous, coordinated assembly and disassembly of integrin-mediated adhesions. An understanding of how integrins regulate cell migration and invasiveness through the dynamic regulation of adhesions is fundamental to both physiological and pathological situations. A variety of cell-matrix adhesions has been identified, namely, focal complexes, focal adhesions, fibrillar adhesions, podosomes, and invadopodia (podosome-type adhesions). These adhesion sites contain integrin clusters able to develop specialized structures, which are different in their architecture and dynamics although they share almost the same proteins. Here we compare recent advances and developments in the elucidation of the organization and dynamics of focal adhesions and podosome-type adhesions, in order to understand how such subcellular sites - though closely related in their composition - can be structurally and functionally different. The underlying question is how their respective physiological or pathological roles are related to their distinct organization.


Asunto(s)
Uniones Célula-Matriz/metabolismo , Adhesiones Focales/metabolismo , Actinas/metabolismo , Animales , Adhesión Celular , Movimiento Celular/fisiología , Matriz Extracelular/metabolismo , Humanos , Integrinas/metabolismo , Modelos Biológicos
16.
Cell Rep ; 24(11): 2857-2868.e4, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30208312

RESUMEN

Cerebral cavernous malformations (CCMs) are neurovascular lesions caused by mutations in one of three genes (CCM1-3). Loss of CCM3 causes the poorest prognosis, and little is known about how it regulates vascular integrity. The C. elegans ccm-3 gene regulates the development of biological tubes that resemble mammalian vasculature, and in a genome-wide reverse genetic screen, we identified more than 500 possible CCM-3 pathway genes. With a phenolog-like approach, we generated a human CCM signaling network and identified 29 genes in common, of which 14 are required for excretory canal extension and membrane integrity, similar to ccm-3. Notably, depletion of the MO25 ortholog mop-25.2 causes severe defects in tube integrity by preventing CCM-3 localization to apical membranes. Furthermore, loss of MO25 phenocopies CCM3 ablation by causing stress fiber formation in endothelial cells. This work deepens our understanding of how CCM3 regulates vascular integrity and may help identify therapeutic targets for treating CCM3 patients.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Proteínas Reguladoras de la Apoptosis/genética , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Células Endoteliales/metabolismo , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiología , Proteínas de la Membrana/genética , Mutación/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
18.
EMBO Mol Med ; 10(10)2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30181117

RESUMEN

Cerebral cavernous malformations (CCMs) are vascular lesions in the central nervous system causing strokes and seizures which currently can only be treated through neurosurgery. The disease arises through changes in the regulatory networks of endothelial cells that must be comprehensively understood to develop alternative, non-invasive pharmacological therapies. Here, we present the results of several unbiased small-molecule suppression screens in which we applied a total of 5,268 unique substances to CCM mutant worm, zebrafish, mouse, or human endothelial cells. We used a systems biology-based target prediction tool to integrate the results with the whole-transcriptome profile of zebrafish CCM2 mutants, revealing signaling pathways relevant to the disease and potential targets for small-molecule-based therapies. We found indirubin-3-monoxime to alleviate the lesion burden in murine preclinical models of CCM2 and CCM3 and suppress the loss-of-CCM phenotypes in human endothelial cells. Our multi-organism-based approach reveals new components of the CCM regulatory network and foreshadows novel small-molecule-based therapeutic applications for suppressing this devastating disease in patients.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Hemangioma Cavernoso del Sistema Nervioso Central/fisiopatología , Animales , Caenorhabditis elegans , Técnicas Citológicas/métodos , Perfilación de la Expresión Génica , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Indoles/metabolismo , Ratones , Oximas/metabolismo , Transducción de Señal/efectos de los fármacos , Biología de Sistemas/métodos , Pez Cebra
19.
FEBS J ; 274(21): 5518-32, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17916086

RESUMEN

The small G protein Rap1 regulates diverse cellular processes such as integrin activation, cell adhesion, cell-cell junction formation and cell polarity. It is crucial to identify Rap1 effectors to better understand the signalling pathways controlling these processes. Krev interaction trapped 1 (Krit1), a protein with FERM (band four-point-one/ezrin/radixin/moesin) domain, was identified as a Rap1 partner in a yeast two-hybrid screen, but this interaction was not confirmed in subsequent studies. As the evidence suggests a role for Krit1 in Rap1-dependent pathways, we readdressed this question. In the present study, we demonstrate by biochemical assays that Krit1 interacts with Rap1A, preferentially its GTP-bound form. We show that, like other FERM proteins, Krit1 adopts two conformations: a closed conformation in which its N-terminal NPAY motif interacts with its C-terminus and an opened conformation bound to integrin cytoplasmic domain associated protein (ICAP)-1, a negative regulator of focal adhesion assembly. We show that a ternary complex can form in vitro between Krit1, Rap1 and ICAP-1 and that Rap1 binds the Krit1 FERM domain in both closed and opened conformations. Unlike ICAP-1, Rap1 does not open Krit1. Using sedimentation assays, we show that Krit1 binds in vitro to microtubules through its N- and C-termini and that Rap1 and ICAP-1 inhibit Krit1 binding to microtubules. Consistently, YFP-Krit1 localizes on cyan fluorescent protein-labelled microtubules in baby hamster kidney cells and is delocalized from microtubules upon coexpression with activated Rap1V12. Finally, we show that Krit1 binds to phosphatidylinositol 4,5-P(2)-containing liposomes and that Rap1 enhances this binding. Based on these results, we propose a model in which Krit1 would be delivered by microtubules to the plasma membrane where it would be captured by Rap1 and ICAP-1.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Unión al GTP rap1/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secuencias de Aminoácidos , Animales , Sitios de Unión , Cricetinae , Membranas/metabolismo , Proteínas Asociadas a Microtúbulos/química , Modelos Biológicos , Modelos Moleculares , Conformación Proteica , Transfección , Técnicas del Sistema de Dos Híbridos
20.
J Cell Biol ; 212(6): 693-706, 2016 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-26953352

RESUMEN

Understanding how cells integrate multiple signaling pathways to achieve specific cell differentiation is a challenging question in cell biology. We have explored the physiological presentation of BMP-2 by using a biomaterial that harbors tunable mechanical properties to promote localized BMP-2 signaling. We show that matrix-bound BMP-2 is sufficient to induce ß3 integrin-dependent C2C12 cell spreading by overriding the soft signal of the biomaterial and impacting actin organization and adhesion site dynamics. In turn, αvß3 integrin is required to mediate BMP-2-induced Smad signaling through a Cdc42-Src-FAK-ILK pathway. ß3 integrin regulates a multistep process to control first BMP-2 receptor activity and second the inhibitory role of GSK3 on Smad signaling. Overall, our results show that BMP receptors and ß3 integrin work together to control Smad signaling and tensional homeostasis, thereby coupling cell adhesion and fate commitment, two fundamental aspects of developmental biology and regenerative medicine.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Integrina beta3/metabolismo , Transducción de Señal/fisiología , Proteínas Smad/metabolismo , Animales , Adhesión Celular/fisiología , Línea Celular , Quinasa 1 de Adhesión Focal/metabolismo , Integrina alfaVbeta3/metabolismo , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Familia-src Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA