Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microb Cell Fact ; 22(1): 132, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474952

RESUMEN

BACKGROUND: Actinomycetes Streptomyces davaonensis and Streptomyces cinnabarinus synthesize a promising broad-spectrum antibiotic roseoflavin, with its synthesis starting from flavin mononucleotide and proceeding through an immediate precursor, aminoriboflavin, that also has antibiotic properties. Roseoflavin accumulation by the natural producers is rather low, whereas aminoriboflavin accumulation is negligible. Yeasts have many advantages as biotechnological producers relative to bacteria, however, no recombinant producers of bacterial antibiotics in yeasts are known. RESULTS: Roseoflavin biosynthesis genes have been expressed in riboflavin- or FMN-overproducing yeast strains of Candida famata and Komagataella phaffii. Both these strains accumulated aminoriboflavin, whereas only the latter produced roseoflavin. Aminoriboflavin isolated from the culture liquid of C. famata strain inhibited the growth of Staphylococcus aureus (including MRSA) and Listeria monocytogenes. Maximal accumulation of aminoriboflavin in shake-flasks reached 1.5 mg L- 1 (C. famata), and that of roseoflavin was 5 mg L- 1 (K. phaffii). Accumulation of aminoriboflavin and roseoflavin by K. phaffii recombinant strain in a bioreactor reached 22 and 130 mg L- 1, respectively. For comparison, recombinant strains of the native bacterial producer S. davaonensis accumulated near one-order less of roseoflavin while no recombinant producers of aminoriboflavin was reported at all. CONCLUSIONS: Yeast recombinant producers of bacterial antibiotics aminoriboflavin and roseoflavin were constructed and evaluated.


Asunto(s)
Antibacterianos , Eucariontes , Antibacterianos/farmacología , Riboflavina
2.
Yeast ; 37(9-10): 467-473, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32401376

RESUMEN

Candida famata is a representative of a group of so-called flavinogenic yeast species that overproduce riboflavin (vitamin B2 ) in response to iron limitation. Overproduced riboflavin accumulates in the cultural medium rather than in the cells suggesting existence of the special mechanisms involved in riboflavin excretion. The corresponding protein and gene have not been identified in yeasts. At the same time, the corresponding gene BCRP has been identified in mammal mammary glands. Several homologs of the mammal BCRP gene encoding putative riboflavin efflux protein (excretase) were identified in Debaryomyces hansenii. The closest homolog was expressed under the control of D. hansenii TEF1 promoter in the riboflavin overproducing strain of C. famata. Resulted transformants overexpressed the corresponding gene and produced 1.4- to 1.8-fold more riboflavin as compared with the parental strain. They also were characterized by overexpression of RIB1 and RIB6 genes of riboflavin synthesis and exhibited elevated specific activity of GTP-cyclohydrolase II. Membrane localization of the riboflavin excretase was confirmed by fluorescent microscopy.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Candida/genética , Proteínas Fúngicas/genética , Mamíferos/genética , Riboflavina/metabolismo , Animales , Candida/clasificación , Clonación Molecular , ADN de Hongos/genética , Riboflavina/biosíntesis
3.
Metab Eng ; 13(1): 82-8, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21040798

RESUMEN

Currently, the mutant of the flavinogenic yeast Candida famata dep8 isolated by classic mutagenesis and selection is used for industrial riboflavin production. Here we report on construction of a riboflavin overproducing strain of C. famata using a combination of random mutagenesis based on the selection of mutants resistant to different antimetabolites as well as rational approaches of metabolic engineering. The conventional mutagenesis involved consecutive selection for resistance to riboflavin structural analog 7-methyl-8-trifluoromethyl-10-(1'-d-ribityl)isoalloxazine), 8-azaguanine, 6-azauracil, 2-diazo-5-oxo-L-norleucine and guanosine as well as screening for yellow colonies at high pH. The metabolic engineering approaches involved introduction of additional copies of transcription factor SEF1 and IMH3 (coding for IMP dehydrogenase) orthologs from Debaryomyces hansenii, and the homologous genes RIB1 and RIB7, encoding GTP cyclohydrolase II and riboflavin synthetase, the first and the last enzymes of riboflavin biosynthesis pathway, respectively. Overexpression of the aforementioned genes in riboflavin overproducer AF-4 obtained by classical selection resulted in a 4.1-fold increase in riboflavin production in shake-flask experiments. D. hansenii IMH3 and modified ARO4 genes conferring resistance to mycophenolic acid and fluorophenylalanine, respectively, were successfully used as new dominant selection markers for C. famata.


Asunto(s)
Candida/clasificación , Candida/metabolismo , Proteínas Fúngicas/metabolismo , Mejoramiento Genético/métodos , Riboflavina/biosíntesis , Transducción de Señal/fisiología , Candida/genética , Clonación Molecular , Proteínas Fúngicas/genética , Proteínas Recombinantes/metabolismo , Riboflavina/genética , Especificidad de la Especie
4.
Biotechnol J ; 15(7): e1900468, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32087089

RESUMEN

Riboflavin (vitamin B2 ) is an indispensable nutrient for humans and animals, since it is the precursor of the essential coenzymes flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), involved in variety of metabolic reactions. Riboflavin is produced on commercial scale and is used for feed and food fortification purposes, and in medicine. Until recently, the mutant strains of the flavinogenic yeast Candida famata were used in industry for riboflavin production. Guanosine triphosphate is the immediate precursor of riboflavin synthesis. Therefore, the activation of metabolic flux toward purine nucleotide biosynthesis is a promising approach to improve riboflavin production. The phosphoribosyl pyrophosphate synthetase and phosphoribosyl pyrophosphate amidotransferase are the rate limiting enzymes in purine biosynthesis. Corresponding genes PRS3 and ADE4 from yeast Debaryomyces hansenii are modified to avoid feedback inhibition and cooverexpressed on the background of a previously constructed riboflavin overproducing strain of C. famata. Constructed strain accumulates twofold more riboflavin when compared to the parental strain.


Asunto(s)
Candida , Ingeniería Metabólica/métodos , Purinas/metabolismo , Riboflavina , Candida/genética , Candida/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Redes y Vías Metabólicas/genética , Riboflavina/genética , Riboflavina/metabolismo
5.
Metab Eng ; 11(3): 163-7, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19558965

RESUMEN

Recombinant strains of the flavinogenic yeast Candida famata able to overproduce flavin mononucleotide (FMN) that contain FMN1 gene encoding riboflavin (RF) kinase driven by the strong constitutive promoter TEF1 (translation elongation factor 1alpha) were constructed. Transformation of these strains with the additional plasmid containing the FMN1 gene under the TEF1 promoter resulted in the 200-fold increase in the riboflavin kinase activity and 100-fold increase in FMN production as compared to the wild-type strain (last feature was found only in iron-deficient medium). Overexpression of the FMN1 gene in the mutant that has deregulated riboflavin biosynthesis pathway and high level of riboflavin production in iron-sufficient medium led to the 30-fold increase in the riboflavin kinase activity and 400-fold increase in FMN production of the resulted transformants. The obtained C. famata recombinant strains can be used for the further construction of improved FMN overproducers.


Asunto(s)
Candida/metabolismo , Mononucleótido de Flavina/biosíntesis , Proteínas Fúngicas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Candida/genética , Clonación Molecular , Mononucleótido de Flavina/genética , Proteínas Fúngicas/genética , Dosificación de Gen/genética , Hierro/metabolismo , Regiones Promotoras Genéticas , Riboflavina/metabolismo
6.
Biometals ; 22(6): 1051-61, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19649569

RESUMEN

Pichia guilliermondii is a representative of yeast species that overproduce riboflavin (vitamin B2) in response to iron deprivation. P. guilliermondii YFH1 gene coding for frataxin homologue, eukaryotic mitochondrial protein involved in iron trafficking and storage, was identified and deleted. Constructed P. guilliermondii Δyfh1 mutant grew very poorly in a sucrose-containing synthetic medium supplemented with sulfate or sulfite as a sole sulfur source. Addition of sodium sulfide, glutathione, cysteine, methionine, N-acetyl-L-cysteine partially restored growth rate of the mutant suggesting that it is impaired in sulfate assimilation. Cellular iron content in Δyfh1 mutant was ~3-3.5 times higher as compared to the parental strain. It produced 50-70 times more riboflavin in iron sufficient synthetic media relative to the parental wildtype strain. Biomass yield of the mutant in the synthetic glutathione containing medium supplemented with glycerol as a sole carbon source was 1.4- and 2.6-fold increased as compared to sucrose and succinate containing media, respectively. Oxygen uptake of the Δyfh1 mutant on sucrose, glycerol or succinate, when compared to the parental strain, was decreased 5.5-, 1.7- and 1.5-fold, respectively. Substitution of sucrose or glycerol in the synthetic iron sufficient medium with succinate completely abolished riboflavin overproduction by the mutants. Deletion of the YFH1 gene caused hypersensitivity to hydrogen peroxide and exogenously added riboflavin and led to alterations in superoxide dismutase activities. Thus, deletion of the gene coding for yeast frataxin homologue has pleiotropic effect on metabolism in P. guilliermondii.


Asunto(s)
Proteínas Fúngicas/metabolismo , Proteínas de Unión a Hierro/metabolismo , Hierro/metabolismo , Organismos Modificados Genéticamente/metabolismo , Pichia/metabolismo , Riboflavina/farmacología , Proteínas Fúngicas/genética , Eliminación de Gen , Glicerol/metabolismo , Peróxido de Hidrógeno/farmacología , Transporte Iónico/efectos de los fármacos , Transporte Iónico/genética , Proteínas de Unión a Hierro/genética , Mitocondrias/metabolismo , Organismos Modificados Genéticamente/genética , Pichia/genética , Riboflavina/biosíntesis , Riboflavina/genética , Ácido Succínico/metabolismo , Sacarosa/metabolismo , Compuestos de Azufre/metabolismo , Ésteres del Ácido Sulfúrico/metabolismo , Superóxido Dismutasa/análisis , Frataxina
7.
J Basic Microbiol ; 47(5): 371-7, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17910100

RESUMEN

Iron deficiency causes oversynthesis of riboflavin in several yeast species, known as flavinogenic yeasts. However, the mechanisms of such regulation are not known. We found that mutations causing riboflavin overproduction and iron hyperaccumulation (rib80, rib81 and hit1), as well as cobalt excess or iron deficiency all provoke oxidative stress in the Pichia guilliermondii yeast. Iron content in the cells, production both of riboflavin and malondialdehyde by P. guilliermondii wild type and hit1 mutant strains depend on a type of carbon source used in cultivation media. The data suggest that the regulation of riboflavin biosynthesis and iron assimilation in P. guilliermondii are linked with cellular oxidative state.


Asunto(s)
Hierro/metabolismo , Mutación , Estrés Oxidativo , Pichia/metabolismo , Riboflavina/biosíntesis , Cobalto/metabolismo , Regulación Fúngica de la Expresión Génica , Malondialdehído/metabolismo , Microscopía Electrónica de Transmisión , Pichia/genética , Pichia/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA