Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Pathog ; 20(2): e1011990, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38324589

RESUMEN

BACKGROUND: Hofbauer cells (HBCs) and cytotrophoblasts (CTBs) are major cell populations in placenta. The indirect impact of maternal SARS-CoV-2 disease on these cells that are not directly infected has not been extensively studied. Herein, we profiled gene expression in HBCs and CTBs isolated from placentae of recovered pregnant subjects infected with SARS-CoV-2 during all trimesters of pregnancy, placentae from subjects with active infection, SARS-CoV-2 vaccinated subjects, and those who were unexposed to the virus. METHODS: Placentae were collected within 4 h post-delivery and membrane-free tissues were enzymatically digested for the isolation of HBCs and CTBs. RNA extracted from HBCs and CTBs were sequenced using 150bp paired-end reads. Differentially expressed genes (DEGs) were identified by DESeq2 package in R and enriched in GO Biological Processes, KEGG Pathway, Reactome Gene Sets, Hallmark Gene Sets, and Canonical Pathways. Protein-protein interactions among the DEGs were modelled using STRING and BioGrid. RESULTS: Pregnant subjects (n = 30) were recruited and categorized into six groups: infected with SARS-CoV-2 in i) the first (1T, n = 4), ii) second (2T, n = 5), iii) third (3T, n = 5) trimester, iv) tested positive at delivery (Delivery, n = 5), v) never infected (Control, n = 6), and vi) fully mRNA-vaccinated by delivery (Vaccinated, n = 5). Compared to the Control group, gene expression analysis showed that HBCs from infected subjects had significantly altered gene expression profiles, with the 2T group having the highest number of DEGs (1,696), followed by 3T and 1T groups (1,656 and 958 DEGs, respectively). These DEGs were enriched for pathways involved in immune regulation for host defense, including production of cytokines, chemokines, antimicrobial proteins, ribosomal assembly, neutrophil degranulation inflammation, morphogenesis, and cell migration/adhesion. Protein-protein interaction analysis mapped these DEGs with oxidative phosphorylation, translation, extracellular matrix organization, and type I interferon signaling. Only 95, 23, and 8 DEGs were identified in CTBs of 1T, 2T, and 3T groups, respectively. Similarly, 11 and 3 DEGs were identified in CTBs and HBCs of vaccinated subjects, respectively. Reassuringly, mRNA vaccination did not induce an inflammatory response in placental cells. CONCLUSIONS: Our studies demonstrate a significant impact of indirect SARS-CoV-2 infection on gene expression of inner mesenchymal HBCs, with limited effect on lining CTB cells isolated from pregnant subjects infected and recovered from SARS-CoV-2. The pathways associated with these DEGs identify potential targets for therapeutic intervention.


Asunto(s)
COVID-19 , Placenta , Embarazo , Femenino , Humanos , COVID-19/genética , COVID-19/metabolismo , SARS-CoV-2/genética , Trofoblastos/metabolismo , Transcriptoma , ARN Mensajero/metabolismo
2.
J Infect Dis ; 229(2): 473-484, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-37786979

RESUMEN

Despite intensive characterization of immune responses after COVID-19 infection and vaccination, research examining protective correlates of vertical transmission in pregnancy are limited. Herein, we profiled humoral and cellular characteristics in pregnant women infected or vaccinated at different trimesters and in their corresponding newborns. We noted a significant correlation between spike S1-specific IgG antibody and its RBD-ACE2 blocking activity (receptor-binding domain-human angiotensin-converting enzyme 2) in maternal and cord plasma (P < .001, R > 0.90). Blocking activity of spike S1-specific IgG was significantly higher in pregnant women infected during the third trimester than the first and second trimesters. Elevated levels of 28 cytokines/chemokines, mainly proinflammatory, were noted in maternal plasma with infection at delivery, while cord plasma with maternal infection 2 weeks before delivery exhibited the emergence of anti-inflammatory cytokines. Our data support vertical transmission of protective SARS-CoV-2-specific antibodies. This vertical antibody transmission and the presence of anti-inflammatory cytokines in cord blood may offset adverse outcomes of inflammation in exposed newborns.


Asunto(s)
COVID-19 , Complicaciones Infecciosas del Embarazo , Recién Nacido , Embarazo , Humanos , Femenino , SARS-CoV-2 , Anticuerpos Antivirales , Citocinas , Antiinflamatorios
3.
J Immunol ; 207(10): 2433-2444, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34663619

RESUMEN

Throughout gestation, the maternal immune system is tightly modulated to allow growth of a semiallogeneic fetus. During the third trimester, the maternal immune system shifts to a proinflammatory phenotype in preparation for labor. What induces this shift remains unclear. Cell-free fetal DNA (cffDNA) is shed by the placenta and enters maternal circulation throughout pregnancy. Levels of cffDNA are increased as gestation progresses and peak before labor, coinciding with a shift to proinflammatory maternal immunity. Furthermore, cffDNA is abnormally elevated in plasma from women with complications of pregnancy, including preterm labor. Given the changes in maternal immunity at the end of pregnancy and the role of sterile inflammation in the pathophysiology of spontaneous preterm birth, we hypothesized that cffDNA can act as a damage-associated molecular pattern inducing an inflammatory cytokine response that promotes hallmarks of parturition. To test this hypothesis, we stimulated human maternal leukocytes with cffDNA from primary term cytotrophoblasts or maternal plasma and observed significant IL-1ß and CXCL10 secretion, which coincides with phosphorylation of IFN regulatory factor 3 and caspase-1 cleavage. We then show that human maternal monocytes are crucial for the immune response to cffDNA and can activate bystander T cells to secrete proinflammatory IFN-γ and granzyme B. Lastly, we find that the monocyte response to cffDNA leads to vascular endothelium activation, induction of myometrial contractility, and PGE2 release in vitro. Our results suggest that the immune response to cffDNA can promote key features of the parturition cascade, which has physiologic consequences relevant to the timing of labor.


Asunto(s)
Ácidos Nucleicos Libres de Células/inmunología , Feto/inmunología , Monocitos/inmunología , Parto/inmunología , Trofoblastos/inmunología , Femenino , Humanos , Embarazo
4.
Sci Rep ; 14(1): 914, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195710

RESUMEN

Villitis of unknown etiology (VUE) is a prevalent inflammatory pathology of the placenta characterized by infiltration of maternal T cells and accumulation of fetal macrophages into chorionic villi. VUE is associated with a variety of adverse clinical outcomes, including fetal growth restriction and fetal demise. Evaluation of the phenotypic and functional differences between two immune cell types associated with this pathology, namely T cells and macrophages, was completed to gain a deeper understanding of the immuno-pathogenesis of VUE. GeoMx Digital Spatial Profiling was performed on placental tissue from 4 high grade VUE cases and 4 controls with no underlying pathology. Placental tissues were fluorescently labeled with CD3 and CD68 antibodies and oligo-conjugated antibodies against 48 protein targets. Overall, T cells in VUE exhibited upregulated markers of activation, memory, and antigen experience compared to controls and were altered based on placental location (villi vs. decidua). Additionally, villous macrophages in VUE upregulated costimulatory and major histocompatibility complex class I and II molecules compared to controls and macrophage subtypes in the decidua. Data herein provides new mechanistic insights into T cell and macrophage biology in VUE which contribute to this abnormal immune response to pregnancy.


Asunto(s)
Corioamnionitis , Placenta , Embarazo , Femenino , Humanos , Proteómica , Linfocitos T , Macrófagos
5.
J Reprod Immunol ; 164: 104261, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38865895

RESUMEN

Infertility affects 15 % of couples in the US, and many turn to assisted reproductive technologies, including in vitro fertilization and subsequent frozen embryo transfer (FET) to become pregnant. This study aimed to perform a broad assessment of the maternal immune system to determine if there are systemic differences on the day of FET in cycles that result in a live birth compared to those that do not. Women undergoing FET of euploid embryos were recruited and blood was collected on the day of FET as well as at early timepoints in pregnancy. Sixty immune and angiogenic proteins were measured in plasma, and gene expression of 92 immune-response related genes were evaluated in peripheral blood mononuclear cells (PBMCs). We found plasma concentrations of interleukin-13 (IL-13) and macrophage derived chemokine (MDC) were significantly lower on the day of FET in cycles that resulted in a live birth. We also found genes encoding C-C chemokine receptor type 5 (CCR5), CD8 subunit alpha (CD8A) and SMAD family member 3 (SMAD3) were upregulated in PBMCs on the day of FET in cycles that resulted in live birth. Measurements of immune mediators from maternal blood could serve as prognostic markers during FET to guide clinical decision making and further our understanding of implantation failure.

6.
Am J Reprod Immunol ; 86(5): e13483, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34233077

RESUMEN

PROBLEM: Cell-free fetal DNA (cffDNA) shed from the placenta can be detected in maternal blood and increases incrementally during gestation. Concentrations are further elevated with pregnancy complications. Specific activators of cffDNA release in such complications have not been identified. Here, we use trophoblast cells from early and term placenta to examine cffDNA release following apoptosis, infection, and sterile inflammatory stress. METHOD OF STUDY: HTR8/SVneo cells were used to model first-trimester trophoblasts, and term cytotrophoblasts (CTBs) were isolated from placentae collected after uncomplicated deliveries. Trophoblasts were treated with varying concentrations of doxorubicin (DOX), lipopolysaccharide (LPS), or high-mobility group box protein 1 (HMGB1) for 18 h. Cells or supernatants were quantified for caspase-3/7 cleavage, pro-inflammatory cytokine secretion, and cffDNA release. RESULTS: Both HTR8/SVneo and CTBs underwent caspase-3/7 cleavage following DOX treatment, with HTR8/SVneo cells more sensitive to apoptosis than term CTBs. Apoptotic cells released more cffDNA in a dose-dependent manner. Treatment with LPS resulted in an increase in pro-inflammatory IL-6 release, particularly in term CTBs compared to early trophoblasts; however, LPS did not affect cffDNA release. Lastly, while neither cell released more TNF-α following stimulation with HMGB1, both HTR8/SVneo and CTBs released significantly more cffDNA in the presence of HMGB1. CONCLUSIONS: These data show that apoptosis and sterile inflammation induced by DOX and HMGB1, respectively, cause an increase in cffDNA concentrations in both first-trimester and term trophoblasts. Understanding physiologic release of cffDNA during healthy and complicated pregnancy can identify new targets for the diagnosis and treatment of gestational complications.


Asunto(s)
Apoptosis , Ácidos Nucleicos Libres de Células/metabolismo , ADN/metabolismo , Inflamación/metabolismo , Trofoblastos/metabolismo , Adulto , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Línea Celular , Ácidos Nucleicos Libres de Células/genética , ADN/genética , Doxorrubicina/toxicidad , Femenino , Proteína HMGB1/toxicidad , Humanos , Inflamación/genética , Inflamación/patología , Lipopolisacáridos/toxicidad , Trofoblastos/efectos de los fármacos , Trofoblastos/patología , Factor de Necrosis Tumoral alfa/metabolismo
7.
J Clin Med ; 10(16)2021 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-34441875

RESUMEN

Pregnancy loss affects approximately 20% of couples. The lack of a clear cause complicates half of all miscarriages. Early evidence indicates the maternal immune system and angiogenesis regulation are both key players in implantation success or failure. Therefore, this prospective study recruited women in the first trimester with known viable intrauterine pregnancy and measured blood levels of immune tolerance proteins galectin-9 (Gal-9) and interleukin (IL)-4, and angiogenesis proteins (vascular endothelial growth factors (VEGF) A, C, and D) between 5 and 9 weeks gestation. Plasma concentrations were compared between groups defined based on (a) pregnancy outcome and (b) maternal history of miscarriage, respectively. In total, 56 women were recruited with 10 experiencing a miscarriage or pregnancy loss in the 2nd or 3rd trimester and 11 having a maternal history or miscarriage. VEGF-C was significantly lower among women with a miscarriage or pregnancy loss. Gal-9 and VEGF-A concentrations were decreased in women with a prior miscarriage. Identification of early changes in maternal immune and angiogenic factors during pregnancy may be a tool to improve patient counseling on pregnancy loss risk and future interventions to reduce miscarriage in a subset of women.

8.
Reprod Sci ; 27(5): 1129-1138, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32046454

RESUMEN

The placenta utilizes many mechanisms to protect the haploidentical fetus from recognition by the maternal immune system. However, in cases of villitis of unknown etiology (VUE), maternal lymphocytes gain access into the placenta, causing significant health risks for the fetus. Evidence suggests that VUE is a rejection response between the mother and the haploidentical fetus. Therefore, we profiled human leukocyte antigen (HLA), an important predictor of transplant rejection, in VUE using placental tissue from ten patients with VUE and ten gestational age matched controls. Placentas were stained using novel multiplexed immunofluorescence (MxIF) to investigate morphology and HLA classes I and II. Gene expression was evaluated by microarray, and where available, tissue typing of mother/baby pairs was completed to determine HLA type. MxIF demonstrated strong CD8+ T cell infiltration and HLA class I staining both the distal and stem villi of VUE placentas. Compared to controls, VUE cases had significantly higher expression of HLA class II mRNA and pathway analysis demonstrated that 40% of the differentially expressed genes in VUE are related to tissue rejection. The data suggest that VUE resembles a rejection response between the mother and the fetus. It remains unknown what initiates immune recognition and why some mothers appear to be at higher risk for developing this condition than others. Understanding this etiology will be critical for developing effective interventions or prevention strategies during pregnancy.


Asunto(s)
Vellosidades Coriónicas/metabolismo , Antígenos HLA/metabolismo , Inflamación/metabolismo , Enfermedades Placentarias/metabolismo , Placenta/metabolismo , Regulación hacia Arriba , Vellosidades Coriónicas/patología , Femenino , Humanos , Inflamación/patología , Linfocitos/metabolismo , Linfocitos/patología , Placenta/patología , Enfermedades Placentarias/patología , Embarazo
9.
PLoS One ; 11(9): e0162145, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27657498

RESUMEN

The stepwise degradation of glycosaminoglycans (GAGs) is accomplished by twelve lysosomal enzymes. Deficiency in any of these enzymes will result in the accumulation of the intermediate substrates on the pathway to the complete turnover of GAGs. The accumulation of these undegraded substrates in almost any tissue is a hallmark of all Mucopolysaccharidoses (MPS). Present therapeutics based on enzyme replacement therapy and bone marrow transplantation have low effectiveness for the treatment of MPS with neurological complications since enzymes used in these therapies are unable to cross the blood brain barrier. Small molecule-based approaches are more promising in addressing neurological manifestations. In this report we identify a target for developing a substrate reduction therapy (SRT) for six MPS resulting from the abnormal degradation of heparan sulfate (HS). Using the minimal promoter of NDST1, one of the first modifying enzymes of HS precursors, we established a luciferase based reporter gene assay capable of identifying small molecules that could potentially reduce HS maturation and therefore lessen HS accumulation in certain MPS. From the screen of 1,200 compounds comprising the Prestwick Chemical library we identified SAHA, a histone deacetylase inhibitor, as the drug that produced the highest inhibitory effects in the reporter assay. More importantly SAHA treated fibroblasts expressed lower levels of endogenous NDST1 and accumulated less 35S GAGs in patient cells. Thus, by using our simple reporter gene assay we have demonstrated that by inhibiting the transcription of NDST1 with small molecules, identified by high throughput screening, we can also reduce the level of sulfated HS substrate in MPS patient cells, potentially leading to SRT.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA