RESUMEN
Lithium-rich manganese-based layered oxides (LRMOs) have received attention from both the academic and the industrial communities in recent years due to their high specific capacity (theoretical capacity ≥250 mAh g-1), low cost, and excellent processability. However, the large-scale applications of these materials still face unstable surface/interface structures, unsatisfactory cycling/rate performance, severe voltage decay, etc. Recently, solid evidence has shown that lattice oxygen in LRMOs easily moves and escapes from the particle surface, which inspires significant efforts on stabilizing the surface/interfacial structures of LRMOs. In this review, the main issues associated with the surface of LRMOs together with the recent advances in surface modifications are outlined. The critical role of outside-in surface decoration at both atomic and mesoscopic scales with an emphasis on surface coating, surface doping, surface structural reconstructions, and multiple-strategy co-modifications is discussed. Finally, the future development and commercialization of LRMOs are prospected. Looking forward, the optimal surface modifications of LRMOs may lead to a low-cost and sustainable next-generation high-performance battery technology.
RESUMEN
Black phosphorus (BP), a fascinating semiconductor with high mobility and a tunable direct bandgap, has emerged as a candidate beyond traditional silicon-based devices for next-generation electronics and optoelectronics. The ability to grow large-scale, high-quality BP films is a prerequisite for scalable integrated applications but has thus far remained a challenge due to unmanageable nucleation events. Here we develop a sustained feedstock release strategy to achieve subcentimetre-size single-crystal BP films by facilitating the lateral growth mode under a low nucleation rate. The as-grown single-crystal BP films exhibit high crystal quality, which brings excellent field-effect electrical properties and observation of pronounced Shubnikov-de Haas oscillations, with high mobilities up to ~6,500 cm2 V-1 s-1 at low temperatures. We further extend this approach to the growth of single-crystal BP alloy films, which broaden the infrared emission regime of BP from 3.7 µm to 6.9 µm at room temperature. This work will greatly facilitate the development of high-performance electronics and optoelectronics based on BP family materials.
RESUMEN
Solar steam generation (SSG) is a promising technique that may find applications in seawater desalination, sewage treatment, etc. The core component for SSG devices is photothermal materials, among which biomass-derived carbon materials have been extensively attempted due to their low cost, wide availability, and diversified microstructures. However, the practical performance of these materials is not satisfactory because of the multifaceted structural requirements for photothermal materials in SSG scenarios. In this work, cactus stems, which possess abundant and multiscaled pores for simultaneous sunlight gathering and water evaporation, are applied as the photothermal structure for SSG devices after mild heat treatment. Consequently, the SSG device based on the carbonized cactus stems delivers high performance (an absorption rate of 93.7% of the solar spectrum, an evaporation rate of 2.02 kg m-2 h-1, and an efficiency of 91.4% under one solar irradiation). We anticipate that the material can be a potential candidate for efficient SSG devices and may shed light on the sustainable supply of water.
RESUMEN
Developing high-performance lithium-sulfur batteries is a promising way to attain higher energy density at lower cost beyond the state-of-the-art lithium-ion battery technology. However, the major issues blocking their practical application are the sluggish kinetics and parasitic shuttling reactions for sulfur and polysulfides. Here, pillaring multilayer graphene with the metal-organic framework (MOF) demonstrates the substantial impact of a versatile interlayer design in tackling those issues. Unlike regular composite separators reported so far, the participation of tri-metallic Ni-Co-Mn MOF (NCM-MOF) as pillars supports the construction of an ion-channel interconnected interlayer structure, unexpectedly balancing the interfacial concentration polarization, spatially confining the soluble polysulfides and vastly affording lithiophilic sites for highly efficient polysulfide sieving/conversion. As a demonstration, we show that the MOF-pillared interlayer structure enables outstanding capacity (1634 mAh g-1 at 0.1C) and longevity (average capacity decay of 0.034% per cycle in 2000 cycles) of lithium-sulfur batteries. Besides, the multilayer separator can be readily integrated into the high-nickel cathode (LiNi0.91Mn0.03Co0.06O2)-based lithium-ion batteries, which efficiently suppresses the undesired phase evolution upon cycling. These findings suggest the potential of "gap-filling" materials in fabricating multi-functional separators, bring forward the pillared interlayer structure for energy-storage applications.
RESUMEN
Due to the influence of poor lighting conditions and the limitations of existing imaging equipment, captured low-illumination images produce noise, artifacts, darkening, and other unpleasant visual problems. Such problems will have an adverse impact on the following high-level image understanding tasks. To overcome this, a two-stage network is proposed in this paper for better restoring low-illumination images. Specifically, instead of manipulating the raw input directly, our network first decomposes the low-illumination image into three different maps (i.e., reflectance, illumination, and feature) via a Decom-Net. During the decomposition process, only reflectance and illumination are further denoised to suppress the effect of noise, while the feature is preserved to reduce the loss of image details. Subsequently, the illumination is deeply adjusted via another well-designed subnetwork called Enhance-Net. Finally, the three restored maps are fused together to generate the final enhanced output. The entire proposed network is optimized in a zero-shot fashion using a newly introduced loss function. Experimental results demonstrate that the proposed network achieves better performance in terms of both objective evaluation and visual quality.
Asunto(s)
Artefactos , Iluminación , Procesamiento de Imagen Asistido por ComputadorRESUMEN
High-performance de/anti-icing overlayers which can be deposited on diverse surfaces offer great potential in many industrial settings and daily life, yet a versatile overlayer applicable to all-weather conditions (high humidity, low temperature, raining, snowing, etc.) is in high demand for practical applications. This study presents the fabrication and application of a superhydrophobic overlayer with a bioinspired hierarchical surface which additionally possesses photothermal and electrothermal functionalities, so it can operate as a de/anti-icing layer in extreme environments. The overlayer, with a papilla-like microstructure similar to that of a lotus leaf, features polydopamine-decorated layered basic zinc acetate microparticles distributed in the framework of multiwalled carbon nanotubes. Specifically, the overlayer is superhydrophobic, and its capability of suppressing the condensation of water droplets and growth of ice crystals is verified by both in situ environmental scanning electron microscopy observations and freezing experiments. Moreover, the overlayer can be warmed up to 74 and 105 °C under the excitation of sunlight and direct current bias, respectively, which is sufficiently high for deicing in severe weather. It is worth mentioning that the overlayer is produced by a spray-coating technique; therefore, it is suitable for large-scale deployment on arbitrary substrate materials. The findings provide insights into a new strategy for engineering multifunctional overlayers and can lead to expanding applications of composite coatings.
RESUMEN
The nucleation and growth of bubbles within a solid matrix is a ubiquitous phenomenon that affects many natural and synthetic processes. However, such a bubbling process is almost "invisible" to common characterization methods because it has an intrinsically multiphased nature and occurs on very short time/length scales. Using in situ transmission electron microscopy to explore the decomposition of a solid precursor that emits gaseous byproducts, the direct observation of a complete nanoscale bubbling process confined in ultrathin 2D flakes is presented here. This result suggests a three-step pathway for bubble formation in the confined environment: void formation via spinodal decomposition, bubble nucleation from the spherization of voids, and bubble growth by coalescence. Furthermore, the systematic kinetics analysis based on COMSOL simulations shows that bubble growth is actually achieved by developing metastable or unstable necks between neighboring bubbles before coalescing into one. This thorough understanding of the bubbling mechanism in a confined geometry has implications for refining modern nucleation theories and controlling bubble-related processes in the fabrication of advanced materials (i.e., topological porous materials).
RESUMEN
Harvesting environmental energy to generate electricity is a key scientific and technological endeavour of our time. Photovoltaic conversion and electromechanical transduction are two common energy-harvesting mechanisms based on, respectively, semiconducting junctions and piezoelectric insulators. However, the different material families on which these transduction phenomena are based complicate their integration into single devices. Here we demonstrate that halide perovskites, a family of highly efficient photovoltaic materials1-3, display a photoflexoelectric effect whereby, under a combination of illumination and oscillation driven by a piezoelectric actuator, they generate orders of magnitude higher flexoelectricity than in the dark. We also show that photoflexoelectricity is not exclusive to halides but a general property of semiconductors that potentially enables simultaneous electromechanical and photovoltaic transduction and harvesting in unison from multiple energy inputs.
RESUMEN
Heterogeneous ice nucleation on atmospheric aerosols strongly affects the earth's climate, and at the microscopic level, surface-irregularity-induced ice crystallization behaviors are common but crucial. Because of the lack of visual evidence and effective experimental methods, the mechanism of atomic-structure-dependent ice formation on aerosol surfaces is poorly understood. Here we chose highly oriented pyrolytic graphite (HOPG) to represent soot (a primary aerosol), and environmental scanning electron microscopy (ESEM) was performed for in situ observations of ice formation. We found that hexagonal ice crystals show an aligned growth pattern via a two-stage pathway with one a axis coinciding with the direction of atomic step edges on the HOPG surface. Additionally, the ice crystals grow at a noticeably higher speed along this direction. This study reveals the role of atomic surface defects in heterogeneous ice nucleation and may pave the way to control icing-related processes in practical applications.
RESUMEN
We report a straightforward strategy to design efficient N doped porous carbon (NPC) electrocatalyst that has a high concentration of easily accessible active sites for the CO2 reduction reaction (CO2 RR). The NPC with large amounts of active N (pyridinic and graphitic N) and highly porous structure is prepared by using an oxygen-rich metal-organic framework (Zn-MOF-74) precursor. The amount of active N species can be tuned by optimizing the calcination temperature and time. Owing to the large pore sizes, the active sites are well exposed to electrolyte for CO2 RR. The NPC exhibits superior CO2 RR activity with a small onset potential of -0.35â V and a high faradaic efficiency (FE) of 98.4 % towards CO at -0.55â V vs. RHE, one of the highest values among NPC-based CO2 RR electrocatalysts. This work advances an effective and facile way towards highly active and cost-effective alternatives to noble-metal CO2 RR electrocatalysts for practical applications.
RESUMEN
A major challenge that prohibits the practical application of single/double-transition metal (3d-M) oxides as oxygen evolution reaction (OER) catalysts is the high overpotentials during the electrochemical process. Herein, our theoretical calculation shows that Fe will be more energetically favorable in the tetrahedral site than Ni and Co, which can further regulate their electronic structure of binary NiCo spinel oxides for optimal adsorption energies of OER intermediates and improved electronic conductivity and hence boost their OER performance. X-ray absorption spectroscopy study on the as-synthesized NiCoFe oxide catalysts indicates that Fe preferentially dopes into tetrahedral sites of the lattice, which induces high proportions of Ni3+ and Co2+ on the octahedral sites (the active sites in OER). Consequently, this material exhibits a significantly enhanced OER performance with an ultralow overpotential of 201 mV cm-2 at 10 mA cm-2 and a small Tafel slope of 39 mV dec-1, which are much superior to state-of-the-art Ni-Co based catalysts.
RESUMEN
In this study, mechanical vibration is used for hydrogen generation and decomposition of dye molecules, with the help of BiFeO3 (BFO) square nanosheets. A high hydrogen production rate of ≈124.1â µmol g-1 is achieved under mechanical vibration (100â W) for 1â h at the resonant frequency of the BFO nanosheets. The decomposition ratio of Rhodamineâ B dye reaches up to ≈94.1 % after mechanical vibration of the BFO catalyst for 50â min. The vibration-induced catalysis of the BFO square nanosheets may be attributed to the piezocatalytic properties of BFO and the high specific surface area of the nanosheets. The uncompensated piezoelectric charges on the surfaces of BFO nanosheets induced by mechanical vibration result in a built-in electric field across the nanosheets. Unlike a photocatalyst for water splitting, which requires a proper band edge position for hydrogen evolution, such a requirement is not needed in piezocatalytic water splitting, where the band tilting under the induced piezoelectric field will make the conduction band of BFO more negative than the H2 /H2 O redox potential (0â V) for hydrogen generation.
RESUMEN
Metal-phosphorus-trichalcogenides (MPTs), represented by NiPS3, FePS3, etc, are newly developed 2D wide-bandgap semiconductors and have been proposed as excellent candidates for ultraviolet (UV) optoelectronics. In spite of having superior advantages for solar-blind UV photodetectors, including those free of surface trap states, being highly compatible with versatile integrations as well as having an appropriate band gap, to date relevant study is rare. In this work, the photoresponse characteristic of UV detectors based on few-layer FePS3 has been comprehensively investigated. The responsivity of the photodetector, which is observed to be determined by bias gate voltage, may achieve as high as 171.6 mAW-1 under the illumination of 254 nm weak light, which is comparable to most commercial UV detectors. Notably, both negative and positive photoconductivities exist in the FePS3 photodetectors and can be controllably switched with bias voltage. The eminent and novel photoresponse property paves the way for the further development and practical use of 2D MPTs in high-performance UV photodetections.
RESUMEN
High-performance Li-rich layered oxide (LRLO) cathode material is appealing for next-generation Li-ion batteries owing to its high specific capacity (>300 mAh g-1). Despite intense studies in the past decade, the low initial Coulombic efficiency and unsatisfactory cycling stability of LRLO still remain as great challenges for its practical applications. Here, we report a rational design of the orthogonally arranged {010}-oriented LRLO nanoplates with built-in anisotropic Li+ ion transport tunnels. Such a novel structure enables fast Li+ ion intercalation and deintercalation kinetics and enhances structural stability of LRLO. Theoretical calculations and experimental characterizations demonstrate the successful synthesis of target cathode material that delivers an initial discharge capacity as high as 303 mAh g-1 with an initial Coulombic efficiency of 93%. After 200 cycles at 1.0 C rate, an excellent capacity retention of 92% can be attained. Our method reported here opens a door to the development of high-performance Ni-Co-Mn-based cathode materials for high-energy density Li-ion batteries.
RESUMEN
With a similar electronic structure as that of platinum, molybdenum carbide (Mo2C) holds significant potential as a high performance catalyst across many chemical reactions. Empirically, the precise control of particle size, shape, and surface nature during synthesis largely determines the catalytic performance of nanoparticles, giving rise to the need of clarifying the underlying growth characteristics in the nucleation and growth of Mo2C. However, the high-temperature annealing involved during the growth of carbides makes it difficult to directly observe and understand the nucleation and growth processes. Here, we report on the use of advanced in situ transmission electron microscopy with atomic resolution to reveal a three-stage mechanism during the growth of Mo2C nanoparticles over a wide temperature range: initial nucleation via a mechanism consistent with spinodal decomposition, subsequent particle coalescence and monomer attachment, and final surface faceting to well-defined particles with minimum surface energy. These microscopic observations made under a heating atmosphere offer new perspectives toward the design of carbide-based catalysts, as well as the tuning of their catalytic performances.
RESUMEN
Se-doped black phosphorus (BP) crystal, in centimeter scale, is synthesized by a scalable gas-phase growth method under mild conditions. The Se-doped BP exhibits high quality with excellent electrical properties. The Se dope induces over 20-fold enhancement of responsivity (R) for BP-based 2D photodetectors, resulting in a high R and external quantum efficiency of 15.33 A W-1 and 2993%, respectively.
RESUMEN
The severe degradation of electrochemical performance for lithium-ion batteries (LIBs) at low temperatures poses a significant challenge to their practical applications. Consequently, extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li+ diffusion kinetics for achieving favorable low-temperature performance of LIBs. Herein, we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials. First, we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures. Second, detailed discussions concerning the key pathways (boosting electronic conductivity, enhancing Li+ diffusion kinetics, and inhibiting lithium dendrite) for improving the low-temperature performance of anode materials are presented. Third, several commonly used low-temperature anode materials are briefly introduced. Fourth, recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design, morphology control, surface & interface modifications, and multiphase materials. Finally, the challenges that remain to be solved in the field of low-temperature anode materials are discussed. This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance.
RESUMEN
Sintering of metal nanocatalysts leading to particle growth and subsequent performance deactivation is a primary issue that hinders their practical applications. While metal-support interaction (MSI) is considered as the critical factor which influences the sintering behavior, the underlying microscopic mechanism and kinetics remain incompletely understood. Here, by using in situ scanning transmission electron microscopy (STEM) and theoretical analysis, we reveal the selection rule of the sintering mechanism for Pt nanoparticles on a two-dimensional (2D) MXene (Ti3C2T x ) support, which relies on the surface topology of MXene flakes. It is demonstrated that the sintering of Pt nanoparticles proceeds via Ostwald ripening (OR) in the surface defect (such as steps and pore edges) regions of MXene flakes due to strong MSI on the Pt/MXene interface; conversely, weak MSI between Pt nanoparticles and the planar surface of MXene leads to prevalent particle migration and coalescence (PMC) for sintering. Furthermore, our quantitative analysis shows a significant divergence in sintering rates for PMC and OR processes. These microscopic observations suggest a clear "sintering mechanism-MSI" relationship for Pt/MXene nanocatalysts and may shed light on the design of novel nanocatalysts.
RESUMEN
Fast and reliable semiconductor hydrogen sensors are crucially important for the large-scale utilization of hydrogen energy. One major challenge that hinders their practical application is the elevated temperature required, arising from undesirable surface passivation and grain-boundary-dominated electron transportation in the conventional nanocrystalline sensing layers. To address this long-standing issue, in the present work, we report a class of highly reactive and boundary-less ultrathin SnO2 films, which are fabricated by the topochemical transformation of 2D SnO transferred from liquid Sn-Bi droplets. The ultrathin SnO2 films are purposely made to consist of well-crystallized quasi-2D nanograins with in-plane grain sizes going beyond 30 nm, whereby the hydroxyl adsorption and grain boundary side-effects are effectively suppressed, giving rise to an activated (101)-dominating dangling-bond surface and a surface-controlled electrical transportation with an exceptional electron mobility of 209 cm2 V-1 s-1. Our work provides a new cost-effective strategy to disruptively improve the gas reception and transduction of SnO2. The proposed chemiresistive sensors exhibit fast, sensitive, and selective hydrogen sensing performance at a much-reduced working temperature of 60 °C. The remarkable sensing performance as well as the simple and scalable fabrication process of the ultrathin SnO2 films render the thus-developed sensors attractive for long awaited practical applications in hydrogen-related industries.
Asunto(s)
Hidrógeno , Compuestos de Estaño , Compuestos de Estaño/química , Hidrógeno/química , Hidrógeno/análisis , Propiedades de Superficie , Gases/análisis , Gases/química , Nanoestructuras/química , SemiconductoresRESUMEN
The flexoelectric effect, which refers to the mechanical-electric coupling between strain gradient and charge polarization, should be considered for use in charge production for catalytically driving chemical reactions. We have previously revealed that halide perovskites can generate orders of higher magnitude flexoelectricity under the illumination of light than in the dark. In this study, we report the catalytic hydrogen production by photo-mechanical coupling involving the photoflexoelectric effect of flexible methylammonium lead iodide (MAPbI3) nanowires (NWs) in hydrogen iodide solution. Upon concurrent light illumination and mechanical vibration, large strain gradients were introduced in flexible MAPbI3 NWs, which subsequently induced significant hydrogen generation (at a rate of 756.5 µmol g-1 h-1, surpassing those values from either photo- or piezocatalysis of MAPbI3 nanoparticles). This photo-mechanical coupling strategy of mechanocatalysis, which enables the simultaneous utilization of multiple energy sources, provides a potentially new mechanism in mechanochemistry for highly efficient hydrogen production.