Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Mol Cell ; 50(5): 736-48, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23665228

RESUMEN

A large fraction of our genome consists of mobile genetic elements. Governing transposons in germ cells is critically important, and failure to do so compromises genome integrity, leading to sterility. In animals, the piRNA pathway is the key to transposon constraint, yet the precise molecular details of how piRNAs are formed and how the pathway represses mobile elements remain poorly understood. In an effort to identify general requirements for transposon control and components of the piRNA pathway, we carried out a genome-wide RNAi screen in Drosophila ovarian somatic sheet cells. We identified and validated 87 genes necessary for transposon silencing. Among these were several piRNA biogenesis factors. We also found CG3893 (asterix) to be essential for transposon silencing, most likely by contributing to the effector step of transcriptional repression. Asterix loss leads to decreases in H3K9me3 marks on certain transposons but has no effect on piRNA levels.


Asunto(s)
Elementos Transponibles de ADN , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , ARN Interferente Pequeño/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Genoma de los Insectos , Ovario/fisiología , Interferencia de ARN , ARN Interferente Pequeño/genética , Reproducibilidad de los Resultados , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo
2.
PLoS One ; 12(7): e0181163, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28723968

RESUMEN

A central challenge in sequencing single-cell genomes is the accurate determination of point mutations, phasing of these mutations, and identifying copy number variations with few assumptions. Ideally, this is accomplished under as low sequencing coverage as possible. Here we report our attempt to meet these goals with a novel library construction and library amplification methodology. In our approach, single-cell genomic DNA is first fragmented with saturated transposition to make a primary library that uniformly covers the whole genome by short fragments. The library is then amplified by a carefully optimized PCR protocol in a uniform and synchronized fashion for next-generation sequencing. Each step of the protocol can be quantitatively characterized. Our shallow sequencing data show that the library is tightly distributed and is useful for the determination of copy number variations.


Asunto(s)
Biblioteca de Genes , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Variaciones en el Número de Copia de ADN , Humanos
3.
Biotechniques ; 35(1): 90-4, 97-8, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12866410

RESUMEN

Identification of nucleotides used for RNA chain initiation or for contacting DNA binding proteins is basic to our understanding of gene regulation. Normally, a radioactive primer is used to copy RNA or DNA. The polymerase extension stops at free ends of mRNA (as in promoter mapping) or at the position of template cleavage or modification (as in footprinting). The locations of these positions are then analyzed by polyacrylamide gel electrophoresis. These analyses have been improved using fluorescently labeled primers and commonly available DNA sequencing machines. The protocol, which we call fluorescently labeled oligonucleotide extension (FLOE), eliminates the need for handling radioactivity and polyacrylamide. The DNA sequencer delivers data as a "trace" that is ready for quantification, which eliminates the need to trace gels separately. The data analysis is further improved by new software, Scanalyze, which we present here. We demonstrate that by using promoter mapping and footprinting, FLOE shortens experimental time, extends the stretch of analyzable sequence, and simplifies quantification compared to radioactive methods and is as sensitive in terms of detecting templates.


Asunto(s)
Algoritmos , Cartilla de ADN , Hibridación Fluorescente in Situ/métodos , Sondas de Oligonucleótidos , Análisis de Secuencia de ADN/métodos , Espectrometría de Fluorescencia/métodos , Coloración y Etiquetado/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Colorantes Fluorescentes , Perfilación de la Expresión Génica , Programas Informáticos , Transcripción Genética/genética
4.
Methods Mol Biol ; 997: 217-24, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23546759

RESUMEN

Analyzing gene expression profiles from cells en masse provides an average profile for the population which may obscure differences in individual cells. Using an optimized workflow for qRT-PCR, gene expression profiles of undifferentiated pluripotent stem cells reveal distinct gene expression profiles for individual cells, and a large expression level range of almost every gene. Importantly, this technique allows for the identification and characterization of small subpopulations.


Asunto(s)
Análisis de la Célula Individual , Transcriptoma , Animales , Células Cultivadas , Expresión Génica , Humanos , Células Madre Pluripotentes/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
5.
Methods Mol Biol ; 687: 113-34, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-20967604

RESUMEN

MicroRNAs (miRNAs) are ∼22 nucleotide regulatory RNA molecules that play important roles in controlling developmental and physiological processes in animals and plants. Measuring the level of miRNA expression is a critical step in methods that study the regulation of biological functions and that use miRNA profiles as diagnostic markers for cancer and other diseases. Even though the quantitation of these small miRNA molecules by RT-qPCR is challenging because of their short length and sequence similarity, a number of quantitative RT-qPCR-based miRNA quantitation methods have been introduced since 2004. The most commonly used methods are stem-loop reverse transcription (RT)-based TaqMan(®) MicroRNA assays and arrays. The high sensitivity and specificity, large dynamic range, and simple work flow of TaqMan(®) MicroRNA assays and arrays have made TaqMan analysis the method of choice for miRNA expression profiling and follow-up validation. Other methods such as poly (A) tailing-based and direct RT-based SYBR miRNA assays are also discussed in this chapter.


Asunto(s)
MicroARNs/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Límite de Detección
6.
Methods Mol Biol ; 632: 87-97, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20217573

RESUMEN

TaqMan Array Cards are high-throughput, accurate, sensitive, and simple-to-use tools for quantitative analysis of mRNA or miRNA transcripts using a real-time PCR protocol. They utilize a microfluidic card with 384 reaction chambers and eight sample loading ports. For studies of coding transcripts, the reaction chambers are preloaded with user selected or predefined panels of Applied Biosystems TaqMan Gene Expression Assays. These assays enable real-time monitoring of a PCR reaction via hydrolysis of an oligonucleotide probe which has been dual labeled with fluorescent dye and quencher. Applications of TaqMan Array Cards include verification and follow on testing of microarray results, as well as hypothesis driven testing of panels of genes selected for their biological functions and relationships. This chapter describes a protocol for assaying transcription in cultured cells using methods optimized to minimize hands-on time and pipetting steps by skipping RNA isolation and generating cDNA directly in Ambion Cells-to-C(T) lysis solution.


Asunto(s)
Industria Farmacéutica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/instrumentación , Polimerasa Taq/metabolismo , Animales , Extractos Celulares/química , Células Cultivadas , Industria Farmacéutica/instrumentación , Humanos , Ratones , Técnicas Analíticas Microfluídicas , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Reacción en Cadena de la Polimerasa , Ratas , Transcripción Reversa , Factores de Tiempo
7.
J Bacteriol ; 188(3): 1060-70, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16428410

RESUMEN

Genome duplication and segregation normally are completed before cell division in all organisms. The temporal relation of duplication and segregation, however, can vary in bacteria. Chromosomal regions can segregate towards opposite poles as they are replicated or can stay cohered for a considerable period before segregation. The bacterium Vibrio cholerae has two differently sized circular chromosomes, chromosome I (chrI) and chrII, of about 3 and 1 Mbp, respectively. The two chromosomes initiate replication synchronously, and the shorter chrII is expected to complete replication earlier than the longer chrI. A question arises as to whether the segregation of chrII also is completed before that of chrI. We fluorescently labeled the terminus regions of chrI and chrII and followed their movements during the bacterial cell cycle. The chrI terminus behaved similarly to that of the Escherichia coli chromosome in that it segregated at the very end of the cell division cycle: cells showed a single fluorescent focus even when the division septum was nearly complete. In contrast, the single focus representing the chrII terminus could divide at the midcell position well before cell septation was conspicuous. There were also cells where the single focus for chrII lingered at midcell until the end of a division cycle, like the terminus of chrI. The single focus in these cells overlapped with the terminus focus for chrI in all cases. It appears that there could be coordination between the two chromosomes through the replication and/or segregation of the terminus region to ensure their segregation to daughter cells.


Asunto(s)
Segregación Cromosómica , Cromosomas Bacterianos/metabolismo , Replicación del ADN/genética , Vibrio cholerae/genética , Cromosomas Bacterianos/genética , ADN Bacteriano/biosíntesis , Colorantes Fluorescentes , Origen de Réplica , Coloración y Etiquetado
8.
Mol Microbiol ; 62(6): 1739-51, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17087773

RESUMEN

In bacteria, many DNA-protein interactions that initiate transcription, replication and recombination require the mediation of DNA architectural proteins such as IHF and HU. For replication initiation, plasmid P1 requires three origin binding proteins: the architectural protein HU, a plasmid-specific initiator, RepA, and the Escherichia coli chromosomal initiator, DnaA. The two initiators bind in the origin of replication to multiple sites, called iterons and DnaA boxes respectively. We show here that all five known DnaA boxes can be deleted from the plasmid origin provided the origin is extended by about 120 bp. The additional DNA provides an IHF site and most likely a weak DnaA binding site, because replacing the putative site with an authentic DnaA box enhanced plasmid replication in an IHF-dependent manner. IHF most likely brings about interactions between distally bound DnaA and RepA by bending the intervening DNA. The role of IHF in activating P1 origin by allowing DnaA binding to a weak site is reminiscent of the role the protein plays in initiating the host chromosomal replication.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Factores de Integración del Huésped/metabolismo , Plásmidos/genética , Origen de Réplica/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Ensayo de Cambio de Movilidad Electroforética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Factores de Integración del Huésped/genética , Unión Proteica , Transactivadores/genética , Transactivadores/metabolismo , Activación Transcripcional
9.
Proc Natl Acad Sci U S A ; 103(13): 4841-5, 2006 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-16549760

RESUMEN

With current concerns of antibiotic-resistant bacteria and biodefense, it has become important to rapidly identify infectious bacteria. Traditional technologies involving isolation and amplification of the pathogenic bacteria are time-consuming. We report a rapid and simple method that combines in vivo biotinylation of engineered host-specific bacteriophage and conjugation of the phage to streptavidin-coated quantum dots. The method provides specific detection of as few as 10 bacterial cells per milliliter in experimental samples, with an approximately 100-fold amplification of the signal over background in 1 h. We believe that the method can be applied to any bacteria susceptible to specific phages and would be particularly useful for detection of bacterial strains that are slow growing, e.g., Mycobacterium, or are highly infectious, e.g., Bacillus anthracis. The potential for simultaneous detection of different bacterial species in a single sample and applications in the study of phage biology are discussed.


Asunto(s)
Bacteriófagos/química , Biotina/análisis , Bacterias Gramnegativas/aislamiento & purificación , Bacterias Grampositivas/aislamiento & purificación , Nanotecnología/métodos , Puntos Cuánticos , Biotina/química , Citometría de Flujo , Microscopía Fluorescente , Sensibilidad y Especificidad , Factores de Tiempo
10.
Mol Microbiol ; 55(1): 175-83, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15612926

RESUMEN

Eukaryotic chromosomes contain a locus, the centromere, at which force is applied to separate replicated chromosomes. A centromere analogue is also found in some bacterial plasmids and chromosomes, although not yet identified in the well-studied Escherichia coli chromosome. We aimed to identify centromere-like sequences in E. coli with the premise that such sequences would be the first to migrate towards the cell poles, away from the cell centre where DNA replication is believed to occur. We have labelled different loci on the chromosome by integrating arrays of binding sites for LacI-EYFP and phage lambdacI-ECFP and supplying these fusion proteins in trans. Comparison of such pairs of loci suggests the presence of a centromere-like site close to the origin of replication. Polar migration of the site was dependent on migS, a locus recently implicated in chromosome migration, thus providing strong support for migS being the E. coli centromere.


Asunto(s)
Segregación Cromosómica , Cromosomas Bacterianos , ADN Bacteriano/metabolismo , Escherichia coli/genética , Secuencia de Bases , Centrómero , Segregación Cromosómica/fisiología , Cromosomas Bacterianos/fisiología , Escherichia coli/fisiología , Genes Reporteros , Proteínas Luminiscentes/genética , Microscopía Fluorescente , Recombinación Genética , Origen de Réplica
11.
Proc Natl Acad Sci U S A ; 102(8): 2856-61, 2005 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-15708977

RESUMEN

Many organisms control initiation of DNA replication by limiting supply or activity of initiator proteins. In plasmids, such as P1, initiators are limited primarily by transcription and dimerization. However, the relevance of initiator limitation to plasmid copy number control has appeared doubtful, because initiator oversupply increases the copy number only marginally. Copy number control instead has been attributed to initiator-mediated plasmid pairing ("handcuffing"), because initiator mutations to handcuffing deficiency elevates the copy number significantly. Here, we present genetic evidence of a role for initiator limitation in plasmid copy number control by showing that autorepression-defective initiator mutants also can elevate the plasmid copy number. We further show, by quantitative modeling, that initiator dimerization is a homeostatic mechanism that dampens active monomer increase when the protein is oversupplied. This finding implies that oversupplied initiator proteins are largely dimeric, partly accounting for their limited ability to increase copy number. A combination of autorepression, dimerization, and handcuffing appears to account fully for control of P1 plasmid copy number.


Asunto(s)
Replicación del ADN , Homeostasis , Plásmidos , ADN/metabolismo , ADN Helicasas/química , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dimerización , Dosificación de Gen , Fenotipo , Transactivadores/química , Transactivadores/genética , Transactivadores/metabolismo
12.
Proc Natl Acad Sci U S A ; 102(34): 11993-8, 2005 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-16040799

RESUMEN

Most HIV transmission occurs on the mucosal surfaces of the gastrointestinal and cervicovaginal tracts, both of which are normally coated by a biofilm of nonpathogenic commensal bacteria. We propose to genetically engineer such naturally occurring bacteria to protect against HIV infection by secreting antiviral peptides. Here we describe the development and characterization of Nissle 1917, a highly colonizing probiotic strain of Escherichia coli, secreting HIV-gp41-hemolysin A hybrid peptides that block HIV fusion and entry into target cells. By using an appropriate combination of cis- and transacting secretory and regulatory signals, micromolar secretion levels of the anti-HIV peptides were achieved. The genetically engineered Nissle 1917 were capable of colonizing mice for periods of weeks to months, predominantly in the colon and cecum, with lower concentrations of bacteria present in the rectum, vagina, and small intestine. Histological and immunocytochemical examination of the colon revealed bacterial growth and peptide secretion throughout the luminal mucosa and in association with epithelial surfaces. The use of genetically engineered live microbes as anti-HIV microbicides has important potential advantages in economy, efficacy, and durability.


Asunto(s)
Fármacos Anti-VIH/farmacología , Escherichia coli/metabolismo , Ingeniería Genética/métodos , Proteína gp41 de Envoltorio del VIH/metabolismo , Infecciones por VIH/prevención & control , VIH/efectos de los fármacos , Proteínas Hemolisinas/metabolismo , Péptidos/farmacología , Animales , Fármacos Anti-VIH/metabolismo , Ciego/microbiología , Colon/microbiología , Escherichia coli/genética , Femenino , VIH/metabolismo , Humanos , Mucosa Intestinal/microbiología , Ratones , Modelos Biológicos , Péptidos/metabolismo , Vagina/microbiología
13.
J Biol Chem ; 277(19): 16705-11, 2002 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-11875064

RESUMEN

TraM is a DNA binding protein required for conjugative transfer of the self-transmissible IncF group of plasmids, including F, R1, and R100. F TraM binds to three sites in F oriT: two high affinity binding sites, sbmA and sbmB, which are direct repeats of nearly identical sequence involved in the autoregulation of the traM gene; and a lower affinity site, sbmC, an inverted repeat important for transfer, which is situated nearest to the nic site where transfer originates. TraM bound cooperatively to its binding sites at oriT; the presence of sbmA and sbmB increased the affinity for sbmC 10-fold. Bending of oriT DNA by TraM was minimal, suggesting that TraM, a tetramer, was able to loop the DNA when bound to sbmA and sbmB simultaneously. Hydroxyl radical footprinting of DNA of sbmA and sbmC revealed that TraM contacted the DNA within a region previously delineated by DNase I footprinting. TraM protected the CT bases within the sequence CTAG, which occurred at 12-base intervals on the top and bottom strand of sbmA, most consistently with other protected bases. The footprint on sbmC revealed that the predicted inverted repeats were protected by TraM with a pattern that began at the center of the repeats and radiated outward at 11-12 base intervals toward the 5'-ends of either strand. At high protein concentrations, this pattern extended beyond the footprint defined by DNase I, suggesting that the DNA was wrapped around the protein forming a nucleosome-like structure, which could aid in preparing the DNA for transfer.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN/metabolismo , Origen de Réplica , Proteínas Bacterianas/química , Secuencia de Bases , Sitios de Unión , Unión Competitiva , Clonación Molecular , Huella de ADN , Desoxirribonucleasa I/metabolismo , Proteínas de Drosophila , Ensayo de Inmunoadsorción Enzimática , Radical Hidroxilo/metabolismo , Cinética , Datos de Secuencia Molecular , Plásmidos/metabolismo , Canales de Potasio , Unión Proteica , Proteínas Recombinantes/metabolismo
14.
J Biol Chem ; 279(29): 29952-62, 2004 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-15126500

RESUMEN

The general amino acid control (GAAC) enables yeast cells to overcome amino acid deprivation by activation of the alpha subunit of translation initiation factor 2 (eIF2alpha) kinase GCN2 and consequent induction of GCN4, a transcriptional activator of amino acid biosynthetic genes. Binding of GCN2 to GCN1 is required for stimulation of GCN2 kinase activity by uncharged tRNA in starved cells. Here we show that YIH1, when overexpressed, dampens the GAAC response (Gcn- phenotype) by suppressing eIF2alpha phosphorylation by GCN2. The overexpressed YIH1 binds GCN1 and reduces GCN1-GCN2 complex formation, and, consistent with this, the Gcn- phenotype produced by YIH1 overexpression is suppressed by GCN2 overexpression. YIH1 interacts with the same GCN1 fragment that binds GCN2, and this YIH1-GCN1 interaction requires Arg-2259 in GCN1 in vitro and in full-length GCN1 in vivo, as found for GCN2-GCN1 interaction. However, deletion of YIH1 does not increase eIF2alpha phosphorylation or derepress the GAAC, suggesting that YIH1 at native levels is not a general inhibitor of GCN2 activity. We discovered that YIH1 normally resides in a complex with monomeric actin, rather than GCN1, and that a genetic reduction in actin levels decreases the GAAC response. This Gcn- phenotype was partially suppressed by deletion of YIH1, consistent with YIH1-mediated inhibition of GCN2 in actin-deficient cells. We suggest that YIH1 resides in a YIH1-actin complex and may be released for inhibition of GCN2 and stimulation of protein synthesis under specialized conditions or in a restricted cellular compartment in which YIH1 is displaced from monomeric actin.


Asunto(s)
Actinas/metabolismo , Aminoácidos/química , Proteínas de Microfilamentos/fisiología , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Actinas/química , Alelos , Arginina/química , Proteínas de Unión al ADN/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Galactosa/química , Eliminación de Gen , Genotipo , Glutatión Transferasa/metabolismo , Espectrometría de Masas , Proteínas de Microfilamentos/química , Factores de Elongación de Péptidos , Fenotipo , Fosforilación , Plásmidos/metabolismo , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Serina-Treonina Quinasas , ARN de Transferencia/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA