Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.018
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(24): 5220-5236.e16, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37944511

RESUMEN

The Sc2.0 project is building a eukaryotic synthetic genome from scratch. A major milestone has been achieved with all individual Sc2.0 chromosomes assembled. Here, we describe the consolidation of multiple synthetic chromosomes using advanced endoreduplication intercrossing with tRNA expression cassettes to generate a strain with 6.5 synthetic chromosomes. The 3D chromosome organization and transcript isoform profiles were evaluated using Hi-C and long-read direct RNA sequencing. We developed CRISPR Directed Biallelic URA3-assisted Genome Scan, or "CRISPR D-BUGS," to map phenotypic variants caused by specific designer modifications, known as "bugs." We first fine-mapped a bug in synthetic chromosome II (synII) and then discovered a combinatorial interaction associated with synIII and synX, revealing an unexpected genetic interaction that links transcriptional regulation, inositol metabolism, and tRNASerCGA abundance. Finally, to expedite consolidation, we employed chromosome substitution to incorporate the largest chromosome (synIV), thereby consolidating >50% of the Sc2.0 genome in one strain.


Asunto(s)
Cromosomas Artificiales de Levadura , Genoma Fúngico , Saccharomyces cerevisiae , Secuencia de Bases , Cromosomas/genética , Saccharomyces cerevisiae/genética , Biología Sintética
2.
Nature ; 579(7798): 260-264, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32132711

RESUMEN

The production of pore-forming toxins that disrupt the plasma membrane of host cells is a common virulence strategy for bacterial pathogens such as methicillin-resistant Staphylococcus aureus (MRSA)1-3. It is unclear, however, whether host species possess innate immune mechanisms that can neutralize pore-forming toxins during infection. We previously showed that the autophagy protein ATG16L1 is necessary for protection against MRSA strains encoding α-toxin4-a pore-forming toxin that binds the metalloprotease ADAM10 on the surface of a broad range of target cells and tissues2,5,6. Autophagy typically involves the targeting of cytosolic material to the lysosome for degradation. Here we demonstrate that ATG16L1 and other ATG proteins mediate protection against α-toxin through the release of ADAM10 on exosomes-extracellular vesicles of endosomal origin. Bacterial DNA and CpG DNA induce the secretion of ADAM10-bearing exosomes from human cells as well as in mice. Transferred exosomes protect host cells in vitro by serving as scavengers that can bind multiple toxins, and improve the survival of mice infected with MRSA in vivo. These findings indicate that ATG proteins mediate a previously unknown form of defence in response to infection, facilitating the release of exosomes that serve as decoys for bacterially produced toxins.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Toxinas Bacterianas/metabolismo , Exosomas/metabolismo , Células A549 , Proteína ADAM10/metabolismo , Animales , Toxinas Bacterianas/farmacología , Supervivencia Celular/efectos de los fármacos , ADN Bacteriano/farmacología , Exosomas/efectos de los fármacos , Exosomas/ultraestructura , Femenino , Células HEK293 , Humanos , Masculino , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Staphylococcus aureus Resistente a Meticilina/fisiología , Ratones , Ratones Endogámicos C57BL , Infecciones Estafilocócicas/mortalidad
3.
PLoS Pathog ; 19(9): e1011647, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37738244

RESUMEN

The bacterial microbiota promotes the life cycle of the intestine-dwelling whipworm Trichuris by mediating hatching of parasite eggs ingested by the mammalian host. Despite the enormous disease burden associated with Trichuris colonization, the mechanisms underlying this transkingdom interaction have been obscure. Here, we used a multiscale microscopy approach to define the structural events associated with bacteria-mediated hatching of eggs for the murine model parasite Trichuris muris. Through the combination of scanning electron microscopy (SEM) and serial block face SEM (SBFSEM), we visualized the outer surface morphology of the shell and generated 3D structures of the egg and larva during the hatching process. These images revealed that exposure to hatching-inducing bacteria catalyzed asymmetric degradation of the polar plugs prior to exit by the larva. Unrelated bacteria induced similar loss of electron density and dissolution of the structural integrity of the plugs. Egg hatching was most efficient when high densities of bacteria were bound to the poles. Consistent with the ability of taxonomically distant bacteria to induce hatching, additional results suggest chitinase released from larva within the eggs degrade the plugs from the inside instead of enzymes produced by bacteria in the external environment. These findings define at ultrastructure resolution the evolutionary adaptation of a parasite for the microbe-rich environment of the mammalian gut.


Asunto(s)
Microbiota , Trichuris , Ratones , Animales , Microscopía Electrónica de Rastreo , Bacterias , Larva , Óvulo , Mamíferos
4.
PLoS Biol ; 20(9): e3001754, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36099266

RESUMEN

Extracellular vesicles of endosomal origin, exosomes, mediate intercellular communication by transporting substrates with a variety of functions related to tissue homeostasis and disease. Their diagnostic and therapeutic potential has been recognized for diseases such as cancer in which signaling defects are prominent. However, it is unclear to what extent exosomes and their cargo inform the progression of infectious diseases. We recently defined a subset of exosomes termed defensosomes that are mobilized during bacterial infection in a manner dependent on autophagy proteins. Through incorporating protein receptors on their surface, defensosomes mediated host defense by binding and inhibiting pore-forming toxins secreted by bacterial pathogens. Given this capacity to serve as decoys that interfere with surface protein interactions, we investigated the role of defensosomes during infection by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent of Coronavirus Disease 2019 (COVID-19). Consistent with a protective function, exosomes containing high levels of the viral receptor ACE2 in bronchoalveolar lavage fluid (BALF) from critically ill COVID-19 patients was associated with reduced intensive care unit (ICU) and hospitalization times. We found ACE2+ exosomes were induced by SARS-CoV-2 infection and activation of viral sensors in cell culture, which required the autophagy protein ATG16L1, defining these as defensosomes. We further demonstrate that ACE2+ defensosomes directly bind and block viral entry. These findings suggest that defensosomes may contribute to the antiviral response against SARS-CoV-2 and expand our knowledge on the regulation and effects of extracellular vesicles during infection.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19 , Humanos , Peptidil-Dipeptidasa A/metabolismo , Receptores Virales , SARS-CoV-2
5.
Genomics ; 116(2): 110800, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38286349

RESUMEN

BACKGROUND: Cellular senescence is associated with a dysregulated inflammatory response, which is an important driver of the development of liver fibrosis (LF). This study aimed to investigate the effect of cellular senescence on LF and identify potential key biomarkers through bioinformatics analysis combined with validation experiments in vivo and in vitro. METHODS: The Gene Expression Omnibus (GEO) database and GeneCards database were used to download the LF dataset and the aging-related gene set, respectively. Functional enrichment analysis of differential genes was then performed using GO and KEGG. Hub genes were further screened using Cytoscape's cytoHubba. Diagnostic values for hub genes were evaluated with a receiver operating characteristic (ROC) curve. Next, CIBERSORTx was used to estimate immune cell types and ratios. Finally, in vivo and in vitro experiments validated the results of the bioinformatics analysis. Moreover, molecular docking was used to simulate drug-gene interactions. RESULTS: A total of 44 aging-related differentially expressed genes (AgDEGs) were identified, and enrichment analysis showed that these genes were mainly enriched in inflammatory and immune responses. PPI network analysis identified 6 hub AgDEGs (STAT3, TNF, MMP9, CD44, TGFB1, and TIMP1), and ROC analysis showed that they all have good diagnostic value. Immune infiltration suggested that hub AgDEGs were significantly associated with M1 macrophages or other immune cells. Notably, STAT3 was positively correlated with α-SMA, COL1A1, IL-6 and IL-1ß, and was mainly expressed in hepatocytes (HCs). Validation experiments showed that STAT3 expression was upregulated and cellular senescence was increased in LF mice. A co-culture system of HCs and hepatic stellate cells (HSCs) further revealed that inhibiting STAT3 reduced HCs senescence and suppressed HSCs activation. In addition, molecular docking revealed that STAT3 was a potential drug therapy target. CONCLUSIONS: STAT3 may be involved in HCs senescence and promote HSCs activation, which in turn leads to the development of LF. Our findings suggest that STAT3 could be a potential biomarker for LF.


Asunto(s)
Envejecimiento , Senescencia Celular , Animales , Ratones , Simulación del Acoplamiento Molecular , Biomarcadores , Biología Computacional
6.
Development ; 148(11)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34100064

RESUMEN

The most distal portion of the ventricular conduction system (VCS) contains cardiac Purkinje cells (PCs), which are essential for synchronous activation of the ventricular myocardium. Contactin-2 (CNTN2), a member of the immunoglobulin superfamily of cell adhesion molecules (IgSF-CAMs), was previously identified as a marker of the VCS. Through differential transcriptional profiling, we discovered two additional highly enriched IgSF-CAMs in the VCS: NCAM-1 and ALCAM. Immunofluorescence staining showed dynamic expression patterns for each IgSF-CAM during embryonic and early postnatal stages, but ultimately all three proteins became highly enriched in mature PCs. Mice deficient in NCAM-1, but not CNTN2 or ALCAM, exhibited defects in PC gene expression and VCS patterning, as well as cardiac conduction disease. Moreover, using ST8sia2 and ST8sia4 knockout mice, we show that inhibition of post-translational modification of NCAM-1 by polysialic acid leads to disrupted trafficking of sarcolemmal intercalated disc proteins to junctional membranes and abnormal expansion of the extracellular space between apposing PCs. Taken together, our data provide insights into the complex developmental biology of the ventricular conduction system.


Asunto(s)
Ventrículos Cardíacos/metabolismo , Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neurogénesis/fisiología , Molécula de Adhesión Celular del Leucocito Activado , Animales , Moléculas de Adhesión Celular/metabolismo , Contactina 2/metabolismo , Expresión Génica , Corazón , Sistema de Conducción Cardíaco/metabolismo , Ratones , Ratones Noqueados , Ácidos Siálicos , Sialiltransferasas
7.
BMC Plant Biol ; 24(1): 446, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38778268

RESUMEN

Salvia miltiorrhiza is commonly used as a Chinese herbal medicine to treat different cardiovascular and cerebrovascular illnesses due to its active ingredients. Environmental conditions, especially drought stress, can affect the yield and quality of S. miltiorrhiza. However, moderate drought stress could improve the quality of S. miltiorrhiza without significantly reducing the yield, and the mechanism of this initial drought resistance is still unclear. In our study, transcriptome and metabolome analyses of S. miltiorrhiza under different drought treatment groups (CK, A, B, and C groups) were conducted to reveal the basis for its drought tolerance. We discovered that the leaves of S. miltiorrhiza under different drought treatment groups had no obvious shrinkage, and the malondialdehyde (MDA) contents as well as superoxide dismutase (SOD) and peroxidase (POD) activities dramatically increased, indicating that our drought treatment methods were moderate, and the leaves of S. miltiorrhiza began to initiate drought resistance. The morphology of root tissue had no significant change under different drought treatment groups, and the contents of four tanshinones significantly enhanced. In all, 5213, 6611, and 5241 differentially expressed genes (DEGs) were shared in the A, B, and C groups compared with the CK group, respectively. The results of KEGG and co-expression analysis showed that the DEGs involved in plant-pathogen interactions, the MAPK signaling pathway, phenylpropanoid biosynthesis, flavonoid biosynthesis, and plant hormone signal transduction responded to drought stress and were strongly correlated with tanshinone biosynthesis. Furthermore, the results of metabolism analysis indicated that 67, 72, and 92 differentially accumulated metabolites (DAMs), including fumarate, ferulic acid, xanthohumol, and phytocassanes, which were primarily involved in phenylpropanoid biosynthesis, flavonoid biosynthesis, and diterpenoid biosynthesis pathways, were detected in these groups. These discoveries provide valuable information on the molecular mechanisms by which S. miltiorrhiza responds to drought stress and will facilitate the development of drought-resistant and high-quality S. miltiorrhiza production.


Asunto(s)
Sequías , Metaboloma , Salvia miltiorrhiza , Transcriptoma , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , Salvia miltiorrhiza/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología
8.
J Virol ; 97(10): e0050723, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37768083

RESUMEN

IMPORTANCE: Generation of virus-host protein-protein interactions (PPIs) maps may provide clues to uncover SARS-CoV-2-hijacked cellular processes. However, these PPIs maps were created by expressing each viral protein singularly, which does not reflect the life situation in which certain viral proteins synergistically interact with host proteins. Our results reveal the host-viral protein-protein interactome of SARS-CoV-2 NSP3, NSP4, and NSP6 expressed individually or in combination. Furthermore, REEP5/TRAM1 complex interacts with NSP3 at ROs and promotes viral replication. The significance of our research is identifying virus-host interactions that may be targeted for therapeutic intervention.


Asunto(s)
Proteasas Similares a la Papaína de Coronavirus , Interacciones Microbiota-Huesped , Glicoproteínas de Membrana , Proteínas de la Membrana , Proteínas de Transporte de Membrana , SARS-CoV-2 , Replicación Viral , Humanos , COVID-19/virología , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Unión Proteica , Mapas de Interacción de Proteínas , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/metabolismo , Proteasas Similares a la Papaína de Coronavirus/metabolismo
9.
Brain Behav Immun ; 119: 84-95, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38552922

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that severely affects individuals' daily life and social development. Unfortunately, there are currently no effective treatments for ASD. Dexmedetomidine (DEX) is a selective agonist of α2 adrenergic receptor (α2AR) and is widely used as a first-line medication for sedation and hypnosis in clinical practice. In recent years, there have been reports suggesting its potential positive effects on improving emotional and cognitive functions. However, whether dexmedetomidine has therapeutic effects on the core symptoms of ASD, namely social deficits and repetitive behaviors, remains to be investigated. In the present study, we employed various behavioral tests to assess the phenotypes of animals, including the three-chamber, self-grooming, marble burying, open field, and elevated plus maze. Additionally, electrophysiological recordings, western blotting, qPCR were mainly used to investigate and validate the potential mechanisms underlying the role of dexmedetomidine. We found that intraperitoneal injection of dexmedetomidine in ASD model mice-BTBR T+ Itpr3tf/J (BTBR) mice could adaptively improve their social deficits. Further, we observed a significant reduction in c-Fos positive signals and interleukin-6 (IL-6) expression level in the prelimbic cortex (PrL) of the BTBR mice treated with dexmedetomidine. Enhancing or inhibiting the action of IL-6 directly affects the social behavior of BTBR mice. Mechanistically, we have found that NF-κB p65 is a key pathway regulating IL-6 expression in the PrL region. In addition, we have confirmed that the α2AR acts as a receptor switch mediating the beneficial effects of dexmedetomidine in improving social deficits. This study provides the first evidence of the beneficial effects of dexmedetomidine on core symptoms of ASD and offers a theoretical basis and potential therapeutic approach for the clinical treatment of ASD.


Asunto(s)
Agonistas de Receptores Adrenérgicos alfa 2 , Trastorno del Espectro Autista , Dexmedetomidina , Modelos Animales de Enfermedad , Interleucina-6 , FN-kappa B , Receptores Adrenérgicos alfa 2 , Conducta Social , Animales , Dexmedetomidina/farmacología , Ratones , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/metabolismo , Masculino , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Adrenérgicos alfa 2/efectos de los fármacos , Agonistas de Receptores Adrenérgicos alfa 2/farmacología , FN-kappa B/metabolismo , Interleucina-6/metabolismo , Transducción de Señal/efectos de los fármacos , Ratones Endogámicos C57BL , Conducta Animal/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Inflamación/metabolismo , Inflamación/tratamiento farmacológico
10.
Langmuir ; 40(26): 13467-13475, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38889438

RESUMEN

Because of the deep and zigzag microporous structure, porous carbon materials exhibit inferior capacitive performance and sluggish electrochemical kinetics for supercapacitor electrode materials. Herein, a single-step carbonation and activation approach was utilized to synthesize coal-based porous carbon with an adjustable pore structure, using CaO as a hard template, KOH as an activator, and oxidized coal as precursors to carbon. The obtained sample possesses an interconnected and hierarchical porous structure, higher SSA (1060 m2 g-1), suitable mesopore volume (0.25 cm3 g-1), and abundant surface heteroatomic functional groups. Consequently, the synthesized carbon exhibits an exceptionally high specific capacitance of 323 F g-1 at 1 A g-1, along with 80.3% capacitance retention at 50 A g-1. The assembled two-electrode configuration demonstrates a remarkable capacitance retention of up to 95% and achieves Coulombic efficiency of nearly 100% with 10,000 cycles in a 6 M KOH electrolyte. Furthermore, the Zn-ion hybrid capacitor also exhibits a specific capacity of up to 139.1 mA h g-1 under conditions of 0.2 A g-1. This work offers a simple method in preparation of coal-based porous carbon with controllable pore structure.

11.
Environ Sci Technol ; 58(25): 11193-11202, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38859757

RESUMEN

Per- and poly fluoroalkyl substances (PFASs) are often encountered with nonaqueous phase liquid (NAPL) in the groundwater at fire-fighting and military training sites. However, it is unclear how PFASs affect the dechlorination performance of sulfidized nanoscale zerovalent iron (S-nFe0), which is an emerging promising NAPL remediation agent. Here, S-nFe0 synthesized with controllable S speciation (FeS or FeS2) were characterized to assess their interactions with PFASs and their dechlorination performance for trichloroethylene NAPL (TCE-NAPL). Surface-adsorbed PFASs blocked materials' reactive sites and inhibited aqueous TCE dechlorination. In contrast, PFASs-adsorbed particles with improved hydrophobicity tended to enrich at the NAPL-water interface, and the reactive sites were re-exposed after the PFASs accumulation into the NAPL phase to accelerate dechlorination. This PFASs-induced phenomenon allowed the materials to present a higher reactivity (up to 1.8-fold) with a high electron efficiency (up to 99%) for TCE-NAPL dechlorination. Moreover, nFe0-FeS2 with a higher hydrophobicity was more readily enriched at the NAPL-water interface and more reactive and selective than nFe0-FeS, regardless of coexisting PFASs. These results unveil that a small amount of yet previously overlooked coexisting PFASs can favor selective reductions of TCE-NAPL by S-nFe0, highlighting the importance of materials hydrophobicity and transportation induced by S and PFASs for NAPL remediation.


Asunto(s)
Hierro , Hierro/química , Contaminantes Químicos del Agua/química , Halogenación , Agua Subterránea/química
12.
BMC Infect Dis ; 24(1): 587, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879487

RESUMEN

BACKGROUND: Early diagnosis of HIV infection decreases the time from HIV diagnosis to viral suppression and reduces further HIV transmission. The Chinese Guidelines for the Diagnosis and Treatment of HIV/AIDS (2021 edition) state that an HIV RNA level > 5,000 copies/mL is the threshold for diagnosing HIV infection. The impact of low viral load values on HIV diagnosis needs to be investigated. METHODS: There were 3455 human immunodeficiency virus (HIV1 + 2) antibody results (immunoblotting method) and 65,129 HIV viral load values at Beijing Youan Hospital from 2019 to 2022. A total of 2434 patients had both antibody confirmatory results and viral load results. The confirmatory antibody results and HIV viral load results of 2434 patients were analyzed to investigate the impact of low viral load values on HIV diagnosis. RESULTS: Of the 2434 patients who had both confirmatory antibody results and viral load results, the viral load values of 140 patients (5.8%) had viral loads ranging from 40 copies/mL to 5,000 copies/mL before positive confirmatory antibody result, and of these 140 patients, the sample receipt time for the viral load tests of 96 (66.7%) individuals was 1 to 6 days earlier than the corresponding sample receipt time for the confirmatory antibody test. In addition, 34 patients (1.4%) had low viral loads ranging from 40 copies/mL to 1,000 copies/mL before positive confirmatory antibody result. CONCLUSION: This study revealed that there is a risk of missed diagnosis if a threshold of 5000 copies/mL is used for the diagnosis of HIV infection. These data provide valuable information for the early diagnosis of HIV infection, and our findings have potential benefits for decreasing HIV transmission.


Asunto(s)
Infecciones por VIH , Centros de Atención Terciaria , Carga Viral , Humanos , Infecciones por VIH/diagnóstico , Infecciones por VIH/virología , Masculino , Femenino , Adulto , Beijing , Persona de Mediana Edad , VIH-1/genética , VIH-1/aislamiento & purificación , ARN Viral/sangre , Anticuerpos Anti-VIH/sangre , Adulto Joven , China/epidemiología , Diagnóstico Precoz , Adolescente
13.
Brain ; 146(1): 278-294, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35867854

RESUMEN

Spinal bulbar muscular atrophy (SBMA), the first identified CAG-repeat expansion disorder, is an X-linked neuromuscular disorder involving CAG-repeat-expansion mutations in the androgen receptor (AR) gene. We utilized CRISPR-Cas9 gene editing to engineer novel isogenic human induced pluripotent stem cell (hiPSC) models, consisting of isogenic AR knockout, control and disease lines expressing mutant AR with distinct repeat lengths, as well as control and disease lines expressing FLAG-tagged wild-type and mutant AR, respectively. Adapting a small-molecule cocktail-directed approach, we differentiate the isogenic hiPSC models into motor neuron-like cells with a highly enriched population to uncover cell-type-specific mechanisms underlying SBMA and to distinguish gain- from loss-of-function properties of mutant AR in disease motor neurons. We demonstrate that ligand-free mutant AR causes drastic mitochondrial dysfunction in neurites of differentiated disease motor neurons due to gain-of-function mechanisms and such cytotoxicity can be amplified upon ligand (androgens) treatment. We further show that aberrant interaction between ligand-free, mitochondria-localized mutant AR and F-ATP synthase is associated with compromised mitochondrial respiration and multiple other mitochondrial impairments. These findings counter the established notion that androgens are requisite for mutant AR-induced cytotoxicity in SBMA, reveal a compelling mechanistic link between ligand-free mutant AR, F-ATP synthase and mitochondrial dysfunction, and provide innovative insights into motor neuron-specific therapeutic interventions for SBMA.


Asunto(s)
Células Madre Pluripotentes Inducidas , Atrofia Muscular Espinal , Humanos , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo
14.
Phytopathology ; 114(2): 474-483, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37589413

RESUMEN

Brassica yellows virus (BrYV) is an economically important virus on cruciferous species. In this study, a one-pot reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay coupled with the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a system was developed for the detection of BrYV. The limit of detection of this method reached 32.8 copies of the BrYV ORF5, which is 100-fold more sensitive than the RT-LAMP method. Moreover, there was no cross-reactivity with other rapeseed-infecting RNA viruses or poleroviruses. We dried the CRISPR/Cas12a reagent in a trehalose and pullulan mixture to retain its efficacy at the RT-LAMP temperature of 63°C in order to allow portable BrYV detection in a water bath. The entire process can be performed in about 1 h, and a positive result can be rapidly and conveniently detected using a handheld UV lamp. In the field, the RT-LAMP-CRISPR/Cas12a assay was accurate and had higher sensitivity than RT-LAMP and reverse transcription-polymerase chain reaction assays. The novel RT-LAMP-CRISPR/Cas12a assay allows convenient, portable, rapid, low-cost, highly sensitive, and specific detection of BrYV and has great potential for on-site monitoring of BrYV.


Asunto(s)
Brassica , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Transcripción Reversa , Sistemas CRISPR-Cas , Enfermedades de las Plantas
15.
BMC Anesthesiol ; 24(1): 137, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600490

RESUMEN

BACKGROUND: With the increasing prevalence of colorectal cancer (CRC), optimizing perioperative management is of paramount importance. This study investigates the potential of stellate ganglion block (SGB), known for its stress response-mediating effects, in improving postoperative recovery. We postulate that preoperative SGB may enhance the postoperative recovery of patients undergoing laparoscopic CRC surgery. METHODS: We conducted a randomized controlled trial of 57 patients undergoing laparoscopic colorectal cancer surgery at a single center. Patients, aged 18-70 years, were randomly assigned to receive either preoperative SGB or standard care. SGB group patients received 10 mL of 0.2% ropivacaine under ultrasound guidance prior to surgery. Primary outcome was time to flatus, with secondary outcomes encompassing time to defecation, lying in bed time, visual analog scale (VAS) pain score, hospital stays, patient costs, intraoperative and postoperative complications, and 3-year mortality. A per-protocol analysis was used. RESULTS: Twenty-nine patients in the SGB group and 28 patients in the control group were analyzed. The SGB group exhibited a significantly shorter time to flatus (mean [SD] hour, 20.52 [9.18] vs. 27.93 [11.69]; p = 0.012), accompanied by decreased plasma cortisol levels (mean [SD], postoperatively, 4.01 [3.42] vs 7.75 [3.13], p = 0.02). Notably, postoperative pain was effectively managed, evident by lower VAS scores at 6 h post-surgery in SGB-treated patients (mean [SD], 4.70 [0.91] vs 5.35 [1.32]; p = 0.040). Furthermore, patients in the SGB group experienced reduced hospital stay length (mean [SD], day, 6.61 [1.57] vs 8.72 [5.13], p = 0.042). CONCLUSIONS: Preoperative SGB emerges as a promising approach to enhance the postoperative recovery of patients undergoing laparoscopic CRC surgery. CLINICAL TRIAL REGISTRATION: ChiCTR1900028404, Principal investigator: Xia Feng, Date of registration: 12/20/2019.


Asunto(s)
Neoplasias Colorrectales , Cirugía Colorrectal , Laparoscopía , Humanos , Ganglio Estrellado , Flatulencia/complicaciones , Método Doble Ciego , Dolor Postoperatorio/epidemiología , Dolor Postoperatorio/prevención & control , Dolor Postoperatorio/tratamiento farmacológico , Laparoscopía/efectos adversos , Neoplasias Colorrectales/cirugía , Ultrasonografía Intervencional
16.
BMC Pediatr ; 24(1): 157, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443865

RESUMEN

BACKGROUND: Chorioamnionitis (CA) can cause multiple organ injuries in premature neonates, particularly to the lungs. Different opinions exist regarding the impact of intrauterine inflammation on neonatal respiratory distress syndrome (NRDS) and bronchopulmonary dysplasia (BPD). We aim to systematically review the relationship between CA or Funisitis (FV) and lung injury among preterm infants. METHODS: We electronically searched PubMed, EMbase, the Cochrane library, CNKI, and CMB for cohort studies from their inception to March 15, 2023. Two reviewers independently screened literature, gathered data, and did NOS scale of included studies. The meta-analysis was performed using RevMan 5.3. RESULTS: Sixteen observational studies including 68,397 patients were collected. Meta-analysis showed CA or FV increased the lung injury risk (OR = 1.43, 95%CI: 1.06-1.92). Except for histological chorioamnionitis (HCA) (OR = 0.72, 95%CI: 0.57-0.90), neither clinical chorioamnionitis (CCA) (OR = 1.86, 95%CI: 0.93-3.72) nor FV (OR = 1.23, 95%CI: 0.48-3.15) nor HCA with FV (OR = 1.85, 95%CI: 0.15-22.63) had statistical significance in NRDS incidence. As a result of stratification by grade of HCA, HCA (II) has a significant association with decreased incidence of NRDS (OR = 0.48, 95%CI: 0.35-0.65). In terms of BPD, there is a positive correlation between BPD and CA/FV (CA: OR = 3.18, 95%CI: 1.68-6.03; FV: OR = 6.36, 95%CI: 2.45-16.52). Among CA, HCA was positively associated with BPD (OR = 2.70, 95%CI: 2.38-3.07), whereas CCA was not associated with BPD (OR = 2.77, 95%CI: 0.68-11.21). HCA and moderate to severe BPD (OR = 25.38, 95%CI: 7.13-90.32) showed a positive correlation, while mild BPD (OR = 2.29, 95%CI: 0.99-5.31) did not. CONCLUSION: Currently, evidence suggests that CA or FV increases the lung injury incidence in premature infants. For different types of CA and FV, HCA can increase the incidence of BPD while decreasing the incidence of NRDS. And this "protective effect" only applies to infants under 32 weeks of age. Regarding lung injury severity, only moderate to severe cases of BPD were positively correlated with CA.


Asunto(s)
Displasia Broncopulmonar , Corioamnionitis , Lesión Pulmonar , Síndrome de Dificultad Respiratoria del Recién Nacido , Recién Nacido , Femenino , Embarazo , Lactante , Humanos , Corioamnionitis/epidemiología , Recien Nacido Prematuro , Inflamación , Displasia Broncopulmonar/epidemiología , Displasia Broncopulmonar/etiología , Síndrome de Dificultad Respiratoria del Recién Nacido/epidemiología , Síndrome de Dificultad Respiratoria del Recién Nacido/etiología
17.
Acta Biochim Biophys Sin (Shanghai) ; 56(6): 916-926, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38634120

RESUMEN

UBE2C is overexpressed in gliomas, and its overexpression has been reported to be correlated with the drug resistance of gliomas to some extent. In this study, we explore the role of UBE2C in regulating temozolomide (TMZ) resistance in glioma and investigate the underlying mechanisms involved. Twenty normal brain tissues and 100 glioma tissues from 50 TMZ-resistant patients and 50 TMZ-sensitive patients are included in this study. TMZ-resistant cell lines are constructed to explore the role of UBE2C in regulating glioma cell viability and TMZ resistance. Our results show that both the mRNA and protein levels of UBE2C are significantly elevated in the brain tissues of glioma patients, especially in those of TMZ-resistant patients. Consistently, UBE2C expression is markedly upregulated in TMZ-resistant cell lines. Overexpression of UBE2C rescues glioma cells from TMZ-mediated apoptosis and enhances cell viability. In contrast, downregulation of UBE2C expression further enhances TMZ function, increases cell apoptosis and decreases cell viability. Mechanistically, UBE2C overexpression decreases p53 expression and enhances aerobic glycolysis level by increasing ATP level, lactate production, and glucose uptake. Downregulation of p53 level abolishes the role of UBE2C downregulation in inhibiting TMZ resistance and aerobic glycolysis in glioma cells. Moreover, an animal assay confirms that downregulation of UBE2C expression further suppresses tumor growth in the context of TMZ treatment. Collectively, this study reveals that downregulation of UBE2C expression enhances the sensitivity of glioma cells to TMZ by regulating the expression of p53 to inhibit aerobic glycolysis.


Asunto(s)
Neoplasias Encefálicas , Resistencia a Antineoplásicos , Glioma , Glucólisis , Temozolomida , Proteína p53 Supresora de Tumor , Enzimas Ubiquitina-Conjugadoras , Temozolomida/farmacología , Humanos , Resistencia a Antineoplásicos/genética , Glioma/metabolismo , Glioma/genética , Glioma/tratamiento farmacológico , Glioma/patología , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Glucólisis/efectos de los fármacos , Glucólisis/genética , Línea Celular Tumoral , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Antineoplásicos Alquilantes/farmacología , Ratones Desnudos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones , Apoptosis/efectos de los fármacos , Apoptosis/genética , Masculino , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Femenino
18.
J Wound Care ; 33(1): 22-27, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38197281

RESUMEN

Patients with diabetes who undergo a kidney transplant are at a great risk of undergoing amputations, usually associated with severe infection and necrosis. The treatment of severe diabetic foot necrosis is challenging in clinic, and the function of the limb is often hugely compromised. A 74-year-old male who had been diagnosed with severe post-renal transplant diabetic foot necrosis refused the option of below-knee amputation from previous surgeons, and requested to keep his left foot. The patient was treated with integrated traditional Chinese medicine (TCM) and Western medicine, with positive results. TCM therapeutic principles included 'clearing heat, removing toxicity, regulating Qi, resolving dampness, activating stagnant blood and nourishing yin as well as tonifying Qi and blood'. Treatment with Western medicine included wound debridement, internal fixation or joint fusion, and use of insulin, antibiotics and vasodilators. The patient was treated with a staged and diverse approach (i.e., a combination of TCM and Western medicine, surgical management and education for diabetic foot care), which ultimately helped the patient achieve limb salvage and regain normal function. A combination therapy of Western medicine and TCM may be a promising approach to heal diabetic foot ulcers.


Asunto(s)
Diabetes Mellitus , Pie Diabético , Anciano , Humanos , Masculino , Terapia Combinada , Pie Diabético/cirugía , Pie , Resultado del Tratamiento , Medicina Tradicional China
19.
Nano Lett ; 23(2): 533-540, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36595350

RESUMEN

In this study, simple-structured wavelength sensors were developed by depositing two back-to-back Au/MAPbI3/Au photodetectors on an MAPbI3 single crystal. This sensor could quantitatively distinguish wavelengths. Further device analysis showed that both photodetectors possess entirely disparate optoelectronic properties. Consequently, the as-developed wavelength sensor could accurately distinguish incident-light wavelengths ranging from 265 to 860 nm with a resolution of less than 1.5 nm based on the relation between the photocurrent ratios of both photodetectors and the incident light wavelengths. Notably, a high resolution and wide detection range are among the optimum reported values for such sensors and enable full-color imaging. Furthermore, technology computer-aided design (TCAD) simulations showed that a mechanism involved in distinguishing wavelengths is attributed to the wavelength-dependent photon generation rate in MAPbI3 single crystals. The high-performance MAPbI3 wavelength sensor can potentially drive the research progress of perovskites in wavelength recognition and full-color imaging.

20.
Water Sci Technol ; 89(8): 2164-2176, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38678416

RESUMEN

To assess the viability and effectiveness of bioretention cell in enhancing rainwater resource utilization within sponge cities, this study employs field monitoring, laboratory testing, and statistical analysis to evaluate the water purification capabilities of bioretention cell. Findings indicate a marked purification impact on surface runoff, with removal efficiencies of 59.81% for suspended solids (SS), 39.01% for chemical oxygen demand (COD), 37.53% for ammonia nitrogen (NH3-N), and 30.49% for total phosphorus (TP). The treated water largely complies with rainwater reuse guidelines and tertiary sewage discharge standards. Notably, while previous research in China has emphasized water volume control in sponge city infrastructures, less attention has been given to the qualitative aspects and field-based evaluations. This research not only fills that gap but also offers valuable insights and practical implications for bioretention cell integration into sponge city development. Moreover, the methodology and outcomes of this study serve as a benchmark for future sponge city project assessments, offering guidance to relevant authorities.


Asunto(s)
Ciudades , Análisis de la Demanda Biológica de Oxígeno , China , Fósforo/análisis , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA