Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38791290

RESUMEN

MiR-142-3p has recently emerged as key factor in tailoring personalized treatments for multiple sclerosis (MS), a chronic autoimmune demyelinating disease of the central nervous system (CNS) with heterogeneous pathophysiology and an unpredictable course. With its involvement in a detrimental regulatory axis with interleukin-1beta (IL1ß), miR-142-3p orchestrates excitotoxic synaptic alterations that significantly impact both MS progression and therapeutic outcomes. In this study, we investigated for the first time the influence of individual genetic variability on the miR-142-3p excitotoxic effect in MS. We specifically focused on the single-nucleotide polymorphism Val66Met (rs6265) of the brain-derived neurotrophic factor (BDNF) gene, known for its crucial role in CNS functioning. We assessed the levels of miR-142-3p and IL1ß in cerebrospinal fluid (CSF) obtained from a cohort of 114 patients with MS upon diagnosis. By stratifying patients according to their genetic background, statistical correlations with clinical parameters were performed. Notably, in Met-carrier patients, we observed a decoupling of miR-142-3p levels from IL1ß levels in the CSF, as well as from of disease severity (Expanded Disability Status Score, EDSS; Multiple Sclerosis Severity Score, MSSS; Age-Related Multiple Sclerosis Severity Score, ARMSS) and progression (Progression Index, PI). Our discovery of the interference between BDNF Val66Met polymorphism and the synaptotoxic IL1ß-miR-142-3p axis, therefore hampering miR-142-3p action on MS course, provides valuable insights for further development of personalized medicine in the field.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Interleucina-1beta , MicroARNs , Esclerosis Múltiple , Polimorfismo de Nucleótido Simple , Humanos , Factor Neurotrófico Derivado del Encéfalo/genética , MicroARNs/genética , Femenino , Masculino , Adulto , Esclerosis Múltiple/genética , Esclerosis Múltiple/líquido cefalorraquídeo , Esclerosis Múltiple/patología , Persona de Mediana Edad , Interleucina-1beta/genética , Interleucina-1beta/líquido cefalorraquídeo , Índice de Severidad de la Enfermedad , Predisposición Genética a la Enfermedad
2.
Mov Disord ; 38(12): 2241-2248, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37750340

RESUMEN

BACKGROUND AND OBJECTIVE: Early-onset Parkinson's disease (EOPD) commonly recognizes a genetic basis; thus, patients with EOPD are often addressed to diagnostic testing based on next-generation sequencing (NGS) of PD-associated multigene panels. However, NGS interpretation can be challenging in a diagnostic setting, and few studies have addressed this issue so far. METHODS: We retrospectively collected data from 648 patients with PD with age at onset younger than 55 years who underwent NGS of a minimal shared panel of 15 PD-related genes, as well as PD-multiplex ligation-dependent probe amplification in eight Italian diagnostic laboratories. Data included a minimal clinical dataset, the complete list of variants included in the diagnostic report, and final interpretation (positive/negative/inconclusive). Patients were further stratified based on age at onset ≤40 years (very EOPD, n = 157). All variants were reclassified according to the latest American College of Medical Genetics and Genomics criteria. For classification purposes, PD-associated GBA1 variants were considered diagnostic. RESULTS: In 186 of 648 (29%) patients, the diagnostic report listed at least one variant, and the outcome was considered diagnostic (positive) in 105 (16%). After reanalysis, diagnosis changed in 18 of 186 (10%) patients, with 5 shifting from inconclusive to positive and 13 former positive being reclassified as inconclusive. A definite diagnosis was eventually reached in 97 (15%) patients, of whom the majority carried GBA1 variants or, less frequently, biallelic PRKN variants. In 89 (14%) cases, the genetic report was inconclusive. CONCLUSIONS: This study attempts to harmonize reporting of PD genetic testing across several diagnostic labs and highlights current difficulties in interpreting genetic variants emerging from NGS-multigene panels, with relevant implications for counseling. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Humanos , Persona de Mediana Edad , Adulto , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/genética , Estudios Retrospectivos , Mutación , Pruebas Genéticas , Edad de Inicio
3.
Mult Scler ; 29(4-5): 512-520, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36803228

RESUMEN

BACKGROUND: Individual genetic variability may influence the course of multiple sclerosis (MS). The interleukin (IL)-8C>T rs2227306 single nucleotide polymorphism (SNP) regulates IL-8 activity in other clinical conditions; however, its role in MS has never been investigated. OBJECTIVES: To explore the association between IL-8 SNP rs2227306, cerebrospinal fluid (CSF) IL-8 concentrations, clinical, and radiological characteristics in a group of newly diagnosed MS patients. METHODS: In 141 relapsing-remitting (RR)-MS patients, rs2227306 polymorphism, CSF levels of IL-8, clinical, and demographical characteristics were determined. In 50 patients, structural magnetic resonance imaging (MRI) measures were also assessed. RESULTS: An association between CSF IL-8 and Expanded Disability Status Scale (EDSS) at diagnosis was found in our set of patients (r = 0.207, p = 0.014). CSF IL-8 concentrations were significantly higher in patients carrying the T variant of rs2227306 (p = 0.004). In the same group, a positive correlation emerged between IL-8 and EDSS (r = 0.273, p = 0.019). Finally, a negative correlation between CSF levels of IL-8 and cortical thickness emerged in rs2227306T carriers (r = -0.498, p = 0.005). CONCLUSION: We describe for the first time a role of SNP rs2227306 of IL-8 gene in regulating the expression and the activity of this inflammatory cytokine in MS.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/diagnóstico , Interleucina-8/genética , Esclerosis Múltiple Recurrente-Remitente/diagnóstico , Citocinas , Imagen por Resonancia Magnética
5.
J Neural Transm (Vienna) ; 128(10): 1599-1610, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34109443

RESUMEN

Peripheral markers in Parkinson's disease (PD) represent a hot issue to provide early diagnosis and assess disease progression. The gold standard marker of PD should feature the same reliability as the pathogenic alteration, which produces the disease itself. PD is foremost a movement disorder produced by a loss of nigrostriatal dopamine innervation, in which striatal dopamine terminals are always markedly reduced in PD patients to an extent, which never overlaps with controls. Similarly, a reliable marker of PD should possess such a non-overlapping feature when compared with controls. In the present study, we provide a novel pathological hallmark, the autophagosome, which in each PD patient was always suppressed compared with each control subject. Autophagosomes were counted as microtubule-associated proteins 1A/1B light chain 3B (LC3)-positive vacuoles at ultrastructural morphometry within peripheral (blood) blood mononuclear cells (PBMC). This also provides the gold standard to assess the autophagy status. Since autophagy may play a role in the pathogenesis of PD, autophagosomes may be a disease marker, while participating in the biology of the disease. Stoichiometric measurement of α-synuclein despite significantly increased in PD patients, overlapped between PD and control patients. Although the study need to be validated in large populations, the number of autophagy vacuoles is neither related with therapy (the amount was similarly suppressed in a few de novo patients), nor the age in PD or controls.


Asunto(s)
Enfermedad de Parkinson , Autofagia , Humanos , Leucocitos Mononucleares , Reproducibilidad de los Resultados , alfa-Sinucleína
6.
Int J Mol Sci ; 22(10)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065350

RESUMEN

Glioblastoma (GBM) cells feature mitochondrial alterations, which are documented and quantified in the present study, by using ultrastructural morphometry. Mitochondrial impairment, which roughly occurs in half of the organelles, is shown to be related to mTOR overexpression and autophagy suppression. The novelty of the present study consists of detailing an mTOR-dependent mitophagy occlusion, along with suppression of mitochondrial fission. These phenomena contribute to explain the increase in altered mitochondria reported here. Administration of the mTOR inhibitor rapamycin rescues mitochondrial alterations. In detail, rapamycin induces the expression of genes promoting mitophagy (PINK1, PARKIN, ULK1, AMBRA1) and mitochondrial fission (FIS1, DRP1). This occurs along with over-expression of VPS34, an early gene placed upstream in the autophagy pathway. The topographic stoichiometry of proteins coded by these genes within mitochondria indicates that, a remarkable polarization of proteins involved in fission and mitophagy within mitochondria including LC3 takes place. Co-localization of these proteins within mitochondria, persists for weeks following rapamycin, which produces long-lasting mitochondrial plasticity. Thus, rapamycin restores mitochondrial status in GBM cells. These findings add novel evidence about mitochondria and GBM, while fostering a novel therapeutic approach to restore healthy mitochondria through mTOR inhibition.


Asunto(s)
Glioblastoma/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Mitofagia/efectos de los fármacos , Sirolimus/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Glioblastoma/metabolismo , Humanos , Mitocondrias/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
7.
Int J Mol Sci ; 22(19)2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34638703

RESUMEN

The peri-infarct region, which surrounds the irreversible ischemic stroke area is named ischemic penumbra. This term emphasizes the borderline conditions for neurons placed within such a critical region. Area penumbra separates the ischemic core, where frank cell loss occurs, from the surrounding healthy brain tissue. Within such a brain region, nervous matter, and mostly neurons are impaired concerning metabolic conditions. The classic biochemical marker, which reliably marks area penumbra is the over-expression of the heat shock protein 70 (HSP70). However, other proteins related to cell clearing pathways are modified within area penumbra. Among these, autophagy proteins like LC3 increase in a way, which recapitulates Hsp70. In contrast, components, such as P20S, markedly decrease. Despite apparent discrepancies, the present study indicates remarkable overlapping between LC3 and P20S redistribution within area penumbra. In fact, the amount of both proteins is markedly reduced within vacuoles. Specifically, a massive loss of LC3 + P20S immuno-positive vacuoles (autophagoproteasomes) is reported here. This represents the most relevant sub-cellular alteration here described in cell clearing pathways within area penumbra. The functional significance of these findings remains to be determined and it will take a novel experimental stream to decipher the fine-tuning of such a phenomenon.


Asunto(s)
Autofagosomas , Autofagia , Proteínas HSP70 de Choque Térmico/metabolismo , Accidente Cerebrovascular Isquémico , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Biomarcadores/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Masculino , Ratones
8.
BMC Neurol ; 20(1): 258, 2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32600288

RESUMEN

BACKGROUND: Leukodystrophies are familial heterogeneous disorders primarily affecting the white matter, which are defined as hypomyelinating or demyelinating based on disease severity as assessed at MRI. Recently, a group of clinically overlapping hypomyelinating leukodystrophies (HL) has been associated with mutations in RNA polymerase III enzymes (Pol III) subunits. CASE PRESENTATION: In this manuscript, we describe two Italian siblings carrying a novel POLR3A genotype. MRI imaging, genetic analysis, and clinical data led to diagnosing HL type 7. The female sibling, at the age of 34, is tetra-paretic and suffers from severe cognitive regression. She had a disease onset at the age of 19, characterized by slow and progressive cognitive impairment associated with gait disturbances and amenorrhea. The male sibling was diagnosed during an MRI carried out for cephalalgia at the age of 41. After 5 years, he developed mild cognitive impairment, dystonia with 4-limb hypotonia, and moderate dysmetria with balance and gait impairment. CONCLUSIONS: The present study provides the first evidence of unusually late age of onset in HL, describing two siblings with a novel POLR3A genotype which showed the first symptoms at the age of 41 and 19, respectively. This provides a powerful insight into clinical heterogeneity and genotype-phenotype correlation in POLR3A related HL.


Asunto(s)
Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , ARN Polimerasa III/genética , Adulto , Edad de Inicio , Encéfalo/patología , Femenino , Genotipo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/patología , Humanos , Imagen por Resonancia Magnética , Masculino , Mutación , Hermanos , Sustancia Blanca/patología
9.
Int J Mol Sci ; 21(13)2020 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-32604996

RESUMEN

In glioblastoma (GBM) cells, an impairment of mitochondrial activity along with autophagy suppression occurs. Autophagy suppression in GBM promotes stemness, invasion, and poor prognosis. The autophagy deficit seems to be due, at least in part, to an abnormal up-regulation of the mammalian target of rapamycin (mTOR), which may be counteracted by pharmacological mTORC1 inhibition. Since autophagy activation is tightly bound to increased mitochondriogenesis, a defect in the synthesis of novel mitochondria is expected to occur in GBM cells. In an effort to measure a baseline deficit in mitochondria and promote mitochondriogenesis, the present study used two different GBM cell lines, both featuring mTOR hyperactivity. mTORC1 inhibition increases the expression of genes and proteins related to autophagy, mitophagy, and mitochondriogenesis. Autophagy activation was counted by RT-PCR of autophagy genes, LC3- immune-fluorescent puncta and immune-gold, as well as specific mitophagy-dependent BNIP3 stoichiometric increase in situ, within mitochondria. The activation of autophagy-related molecules and organelles after rapamycin exposure occurs concomitantly with progression of autophagosomes towards lysosomes. Remarkably, mitochondrial biogenesis and plasticity (increased mitochondrial number, integrity, and density as well as decreased mitochondrial area) was long- lasting for weeks following rapamycin withdrawal.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , Mitocondrias/patología , Mitofagia , Biogénesis de Organelos , Serina-Treonina Quinasas TOR/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Serina-Treonina Quinasas TOR/genética , Células Tumorales Cultivadas
10.
Int J Mol Sci ; 21(2)2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-31968687

RESUMEN

Recently, several studies focused on the genetics of gliomas. This allowed identifying several germline loci that contribute to individual risk for tumor development, as well as various somatic mutations that are key for disease classification. Unfortunately, none of the germline loci clearly confers increased risk per se. Contrariwise, somatic mutations identified within the glioma tissue define tumor genotype, thus representing valid diagnostic and prognostic markers. Thus, genetic features can be used in glioma classification and guided therapy. Such copious genomic variabilities are screened routinely in glioma diagnosis. In detail, Sanger sequencing or pyrosequencing, fluorescence in-situ hybridization, and microsatellite analyses were added to immunohistochemistry as diagnostic markers. Recently, Next Generation Sequencing was set-up as an all-in-one diagnostic tool aimed at detecting both DNA copy number variations and mutations in gliomas. This approach is widely used also to detect circulating tumor DNA within cerebrospinal fluid from patients affected by primary brain tumors. Such an approach is providing an alternative cost-effective strategy to genotype all gliomas, which allows avoiding surgical tissue collection and repeated tumor biopsies. This review summarizes available molecular features that represent solid tools for the genetic diagnosis of gliomas at present or in the next future.


Asunto(s)
Biomarcadores de Tumor/genética , Sitios Genéticos/genética , Glioma/genética , Neoplasias Encefálicas/patología , ADN Tumoral Circulante/líquido cefalorraquídeo , Variaciones en el Número de Copia de ADN , Genómica , Glioma/diagnóstico , Glioma/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Mutación , Patología Molecular , Análisis de Secuencia de ADN
11.
Int J Mol Sci ; 20(12)2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-31197099

RESUMEN

Glucocorticoids are produced by the adrenal cortex and regulate cell metabolism in a variety of organs. This occurs either directly, by acting on specific receptors in a variety of cells, or by stimulating catecholamine expression within neighbor cells of the adrenal medulla. In this way, the whole adrenal gland may support specific metabolic requirements to cope with stressful conditions from external environment or internal organs. In addition, glucocorticoid levels may increase significantly in the presence of inappropriate secretion from adrenal cortex or may be administered at high doses to treat inflammatory disorders. In these conditions, metabolic alterations and increased blood pressure may occur, although altered sleep-waking cycle, anxiety, and mood disorders are frequent. These latter symptoms remain unexplained at the molecular level, although they overlap remarkably with disorders affecting catecholamine nuclei of the brainstem reticular formation. In fact, the present study indicates that various doses of glucocorticoids alter the expression of genes and proteins, which are specific for reticular catecholamine neurons. In detail, corticosterone administration to organotypic mouse brainstem cultures significantly increases Tyrosine hydroxylase (TH) and Dopamine transporter (DAT), while Phenylethanolamine N-methyltransferase (PNMT) is not affected. On the other hand, Dopamine Beta-Hydroxylase (DBH) increases only after very high doses of corticosterone.


Asunto(s)
Tronco Encefálico/metabolismo , Catecolaminas/metabolismo , Corticosterona/farmacología , Animales , Tronco Encefálico/citología , Tronco Encefálico/efectos de los fármacos , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Dopamina beta-Hidroxilasa/genética , Dopamina beta-Hidroxilasa/metabolismo , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Órganos/métodos , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo , Regulación hacia Arriba
12.
Hum Mutat ; 39(10): 1428-1441, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30007050

RESUMEN

Atrioventricular septal defect (AVSD) may occur as part of a complex disorder (e.g., Down syndrome, heterotaxy), or as isolate cardiac defect. Multiple lines of evidence support a role of calcineurin/NFAT signaling in AVSD, and mutations in CRELD1, a protein functioning as a regulator of calcineurin/NFAT signaling have been reported in a small fraction of affected subjects. In this study, 22 patients with isolated AVSD and 38 with AVSD and heterotaxy were screened for NFATC1 gene mutations. Sequence analysis identified three missense variants in three individuals, including a subject with isolated AVSD [p.(Ala367Val)], an individual with AVSD and heterotaxy [p.(Val210Met)], and a subject with AVSD, heterotaxy, and oculo-auriculo-vertebral spectrum (OAVS) [p.(Ala696Thr)], respectively. The latter was also heterozygous for a missense change in TBX1 [p.(Pro86Leu)]. Targeted resequencing of genes associated with AVSD, heterotaxy, or OAVS excluded additional hits in the three mutation-positive subjects. Functional characterization of NFATC1 mutants documented defective nuclear translocation and decreased transcriptional transactivation activity. When expressed in zebrafish, the three NFATC1 mutants caused cardiac looping defects and altered atrioventricular canal patterning, providing evidence of their functional relevance in vivo. Our findings support a role of defective NFATC1 function in the etiology of isolated and heterotaxy-related AVSD.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Defectos de los Tabiques Cardíacos/genética , Heterocigoto , Mutación Missense , Factores de Transcripción NFATC/genética , Alelos , Animales , Deleción Cromosómica , Femenino , Técnica del Anticuerpo Fluorescente , Expresión Génica , Genes Reporteros , Defectos de los Tabiques Cardíacos/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Factores de Transcripción NFATC/metabolismo , Fenotipo , Análisis de Secuencia de ADN , Pez Cebra
13.
Arch Ital Biol ; 155(4): 110-117, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29405028

RESUMEN

Amyotrophic lateral sclerosis (ALS) is fatal neurodegenerative disease clinically characterized by upper and lower motor neuron dysfunction resulting in rapidly progressive paralysis and death from respiratory failure. Most cases appear to be sporadic, but 5-10 % of cases have a family history of the disease, and over the last decade, identification of mutations in about 20 genes predisposing to these disorders has provided the means to better understand their pathogenesis. Next Generation sequencing (NGS) is an advanced high-throughput DNA sequencing technology which have rapidly contributed to an acceleration in the discovery of genetic risk factors for both familial and sporadic neurological and neurodegenerative diseases. These strategies allowed to rapidly identify disease-associated variants and genetic risk factors for both familial (fALS) and sporadic ALS (sALS), strongly contributing to the knowledge of the genetic architecture of ALS. Moreover, as the number of ALS genes grows, many of the proteins they encode are in intracellular processes shared with other known diseases, suggesting an overlapping of clinical and phatological features between different diseases. To emphasize this concept, the review focuses on genes coding for Valosin-containing protein (VPC) and two Heterogeneous nuclear RNA-binding proteins (HNRNPA1 and hnRNPA2B1), recently idefied through NGS, where different mutations have been associated in both ALS and other neurological and neurodegenerative diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Genotipo , Humanos , Fenotipo
14.
Hum Mol Genet ; 23(16): 4315-27, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24705357

RESUMEN

RASopathies, a family of disorders characterized by cardiac defects, defective growth, facial dysmorphism, variable cognitive deficits and predisposition to certain malignancies, are caused by constitutional dysregulation of RAS signalling predominantly through the RAF/MEK/ERK (MAPK) cascade. We report on two germline mutations (p.Gly39dup and p.Val55Met) in RRAS, a gene encoding a small monomeric GTPase controlling cell adhesion, spreading and migration, underlying a rare (2 subjects among 504 individuals analysed) and variable phenotype with features partially overlapping Noonan syndrome, the most common RASopathy. We also identified somatic RRAS mutations (p.Gly39dup and p.Gln87Leu) in 2 of 110 cases of non-syndromic juvenile myelomonocytic leukaemia, a childhood myeloproliferative/myelodysplastic disease caused by upregulated RAS signalling, defining an atypical form of this haematological disorder rapidly progressing to acute myeloid leukaemia. Two of the three identified mutations affected known oncogenic hotspots of RAS genes and conferred variably enhanced RRAS function and stimulus-dependent MAPK activation. Expression of an RRAS mutant homolog in Caenorhabditis elegans enhanced RAS signalling and engendered protruding vulva, a phenotype previously linked to the RASopathy-causing SHOC2(S2G) mutant. Overall, these findings provide evidence of a functional link between RRAS and MAPK signalling and reveal an unpredicted role of enhanced RRAS function in human disease.


Asunto(s)
Carcinogénesis/genética , Mutación/fisiología , Fenotipo , Proteínas ras/genética , Animales , Caenorhabditis elegans , Estudios de Cohortes , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mielomonocítica Juvenil/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Síndrome de Noonan/genética , Proteína Oncogénica v-akt/metabolismo , Transducción de Señal/genética , Proteínas ras/química , Proteínas ras/metabolismo
15.
Am J Med Genet A ; 161A(12): 3133-6, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23956173

RESUMEN

Deletion 22q11.2 (del22q11.2) syndrome, also known as DiGeorge/Velo-cardio-facial syndrome (DG/VCFS), and Alagille syndrome are genetic disorders characteristically associated with congenital heart defects (CHDs). We report on a patient with tetralogy of Fallot (TOF) and clinical features of DG/VCFS, hemizygous for del22q11.2 and heterozygous for the 2810G > A (p.Arg937Gln) mutation in the JAG1 gene associated with Alagille syndrome. The clinical features of del22q11.2 syndrome are present in the patient, including facial anomalies, typical TOF, speech delay with hypernasal voice, and learning difficulties. TOF and mild hepatic involvement, consisting of slightly elevated aminotransferase conjugated bilirubin levels, were the only features of Alagille syndrome in our patient. The anatomic type of TOF displayed no distinctive recognizable pattern for either DG/VCFS or Alagille syndrome. It is likely that hemizygosity of the TBX1 gene was causally related to TOF in this patient, although a synergistic pathogenic role of the JAG1 gene mutation in causing the heart defect cannot be excluded. JAG1 mutations have been previously detected in patients with nonsyndromic TOF and recent molecular evidence supports the cumulative effect of multiple genetic defects in the etiology of human malformations. We hypothesize that a similar mechanism could be present in this patient with del22q11.2 syndrome associated with a JAG1 missense mutation acting as possible modifier factor for TOF.


Asunto(s)
Proteínas de Unión al Calcio/genética , Síndrome de DiGeorge/genética , Cardiopatías Congénitas/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de la Membrana/genética , Tetralogía de Fallot/genética , Síndrome de Alagille/genética , Síndrome de Alagille/fisiopatología , Niño , Síndrome de DiGeorge/fisiopatología , Cardiopatías Congénitas/fisiopatología , Humanos , Proteína Jagged-1 , Masculino , Mutación Missense , Proteínas Serrate-Jagged , Proteínas de Dominio T Box/genética , Tetralogía de Fallot/fisiopatología
16.
Genes (Basel) ; 14(8)2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37628710

RESUMEN

Stargardt macular dystrophy is a genetic disorder, but in many cases, the causative gene remains unrevealed. Through a combined approach (whole-exome sequencing and phenotype/family-driven filtering algorithm) and a multilevel validation (international database searching, prediction scores calculation, splicing analysis assay, segregation analyses), a biallelic mutation in the RDH8 gene was identified to be responsible for Stargardt macular dystrophy in a consanguineous Italian family. This paper is a report on the first family in which a biallelic deleterious mutation in RDH8 is detected. The disease phenotype is consistent with the expected phenotype hypothesized in previous studies on murine models. The application of the combined approach to genetic data and the multilevel validation allowed the identification of a splicing mutation in a gene that has never been reported before in human disorders.


Asunto(s)
Algoritmos , Empalme del ARN , Humanos , Animales , Ratones , Bioensayo , Bases de Datos Factuales , Enfermedad de Stargardt/genética
17.
Cells ; 12(2)2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36672156

RESUMEN

Cells from glioblastoma multiforme (GBM) feature up-regulation of the mechanistic Target of Rapamycin (mTOR), which brings deleterious effects on malignancy and disease course. At the cellular level, up-regulation of mTOR affects a number of downstream pathways and suppresses autophagy, which is relevant for the neurobiology of GBM. In fact, autophagy acts on several targets, such as protein clearance and mitochondrial status, which are key in promoting the malignancy GBM. A defective protein clearance extends to cellular prion protein (PrPc). Recent evidence indicates that PrPc promotes stemness and alters mitochondrial turnover. Therefore, the present study measures whether in GBM cells abnormal amount of PrPc and mitochondrial alterations are concomitant in baseline conditions and whether they are reverted by mTOR inhibition. Proteins related to mitochondrial turnover were concomitantly assessed. High amounts of PrPc and altered mitochondria were both mitigated dose-dependently by the mTOR inhibitor rapamycin, which produced a persistent activation of the autophagy flux and shifted proliferating cells from S to G1 cell cycle phase. Similarly, mTOR suppression produces a long-lasting increase of proteins promoting mitochondrial turnover, including Pink1/Parkin. These findings provide novel evidence about the role of autophagy in the neurobiology of GBM.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/metabolismo , Proteínas Priónicas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Autofagia , Mitocondrias/metabolismo
18.
Front Neurol ; 14: 1296924, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38145127

RESUMEN

Introduction: Pure hereditary spastic paraplegia (SPG) type 4 (SPG4) is caused by mutations of SPAST gene. This study aimed to analyze SPAST variants in SPG4 patients to highlight the occurrence of splicing mutations and combine functional studies to assess the relevance of these variants in the molecular mechanisms of the disease. Methods: We performed an NGS panel in 105 patients, in silico analysis for splicing mutations, and in vitro minigene assay. Results and discussion: The NGS panel was applied to screen 105 patients carrying a clinical phenotype corresponding to upper motor neuron syndrome (UMNS), selectively affecting motor control of lower limbs. Pathogenic mutations in SPAST were identified in 12 patients (11.42%), 5 missense, 3 frameshift, and 4 splicing variants. Then, we focused on the patients carrying splicing variants using a combined approach of in silico and in vitro analysis through minigene assay and RNA, if available. For two splicing variants (i.e., c.1245+1G>A and c.1414-2A>T), functional assays confirm the types of molecular alterations suggested by the in silico analysis (loss of exon 9 and exon 12). In contrast, the splicing variant c.1005-1delG differed from what was predicted (skipping exon 7), and the functional study indicates the loss of frame and formation of a premature stop codon. The present study evidenced the high splice variants in SPG4 patients and indicated the relevance of functional assays added to in silico analysis to decipher the pathogenic mechanism.

19.
PLoS One ; 18(10): e0292180, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37788254

RESUMEN

Parkinson's disease (PD) is the fastest-growing neurodegenerative disorder, currently affecting ~7 million people worldwide. PD is clinically and genetically heterogeneous, with at least 10% of all cases explained by a monogenic cause or strong genetic risk factor. However, the vast majority of our present data on monogenic PD is based on the investigation of patients of European White ancestry, leaving a large knowledge gap on monogenic PD in underrepresented populations. Gene-targeted therapies are being developed at a fast pace and have started entering clinical trials. In light of these developments, building a global network of centers working on monogenic PD, fostering collaborative research, and establishing a clinical trial-ready cohort is imperative. Based on a systematic review of the English literature on monogenic PD and a successful team science approach, we have built up a network of 59 sites worldwide and have collected information on the availability of data, biomaterials, and facilities. To enable access to this resource and to foster collaboration across centers, as well as between academia and industry, we have developed an interactive map and online tool allowing for a quick overview of available resources, along with an option to filter for specific items of interest. This initiative is currently being merged with the Global Parkinson's Genetics Program (GP2), which will attract additional centers with a focus on underrepresented sites. This growing resource and tool will facilitate collaborative research and impact the development and testing of new therapies for monogenic and potentially for idiopathic PD patients.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/terapia , Cuidados Paliativos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA