Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34301865

RESUMEN

In mammals, the KRAS locus encodes two protein isoforms, KRAS4A and KRAS4B, which differ only in their C terminus via alternative splicing of distinct fourth exons. Previous studies have shown that whereas KRAS expression is essential for mouse development, the KRAS4A isoform is expendable. Here, we have generated a mouse strain that carries a terminator codon in exon 4B that leads to the expression of an unstable KRAS4B154 truncated polypeptide, hence resulting in a bona fide Kras4B-null allele. In contrast, this terminator codon leaves expression of the KRAS4A isoform unaffected. Mice selectively lacking KRAS4B expression developed to term but died perinatally because of hypertrabeculation of the ventricular wall, a defect reminiscent of that observed in embryos lacking the Kras locus. Mouse embryonic fibroblasts (MEFs) obtained from Kras4B-/- embryos proliferated less than did wild-type MEFs, because of limited expression of KRAS4A, a defect that can be compensated for by ectopic expression of this isoform. Introduction of the same terminator codon into a KrasFSFG12V allele allowed expression of an endogenous KRAS4AG12V oncogenic isoform in the absence of KRAS4B. Exposure of Kras+/FSF4AG12V4B- mice to Adeno-FLPo particles induced lung tumors with complete penetrance, albeit with increased latencies as compared with control Kras+/FSFG12V animals. Moreover, a significant percentage of these mice developed proximal metastasis, a feature seldom observed in mice expressing both mutant isoforms. These results illustrate that expression of the KRAS4AG12V mutant isoform is sufficient to induce lung tumors, thus suggesting that selective targeting of the KRAS4BG12V oncoprotein may not have significant therapeutic consequences.


Asunto(s)
Adenocarcinoma del Pulmón/secundario , Neoplasias Pulmonares/patología , Proteínas Proto-Oncogénicas p21(ras)/fisiología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Animales , Apoptosis , Proliferación Celular , Femenino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Isoformas de Proteínas , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Proc Natl Acad Sci U S A ; 117(39): 24415-24426, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32913049

RESUMEN

KRAS mutant lung adenocarcinomas remain intractable for targeted therapies. Genetic interrogation of KRAS downstream effectors, including the MAPK pathway and the interphase CDKs, identified CDK4 and RAF1 as the only targets whose genetic inactivation induces therapeutic responses without causing unacceptable toxicities. Concomitant CDK4 inactivation and RAF1 ablation prevented tumor progression and induced complete regression in 25% of KRAS/p53-driven advanced lung tumors, yet a significant percentage of those tumors that underwent partial regression retained a population of CDK4/RAF1-resistant cells. Characterization of these cells revealed two independent resistance mechanisms implicating hypermethylation of several tumor suppressors and increased PI3K activity. Importantly, these CDK4/RAF1-resistant cells can be pharmacologically controlled. These studies open the door to new therapeutic strategies to treat KRAS mutant lung cancer, including resistant tumors.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Quinasa 4 Dependiente de la Ciclina/genética , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogénicas c-raf/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteína p53 Supresora de Tumor/metabolismo , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Animales , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Quinasa 4 Dependiente de la Ciclina/metabolismo , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Silenciador del Gen , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos C57BL , Mutación , Proteínas Proto-Oncogénicas c-raf/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína p53 Supresora de Tumor/genética
3.
J Clin Invest ; 133(7)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36928090

RESUMEN

KRASG12C inhibitors have revolutionized the clinical management of patients with KRASG12C-mutant lung adenocarcinoma. However, patient exposure to these inhibitors leads to the rapid onset of resistance. In this study, we have used genetically engineered mice to compare the therapeutic efficacy and the emergence of tumor resistance between genetic ablation of mutant Kras expression and pharmacological inhibition of oncogenic KRAS activity. Whereas Kras ablation induces massive tumor regression and prevents the appearance of resistant cells in vivo, treatment of KrasG12C/Trp53-driven lung adenocarcinomas with sotorasib, a selective KRASG12C inhibitor, caused a limited antitumor response similar to that observed in the clinic, including the rapid onset of resistance. Unlike in human tumors, we did not observe mutations in components of the RAS-signaling pathways. Instead, sotorasib-resistant tumors displayed amplification of the mutant Kras allele and activation of xenobiotic metabolism pathways, suggesting that reduction of the on-target activity of KRASG12C inhibitors is the main mechanism responsible for the onset of resistance. In sum, our results suggest that resistance to KRAS inhibitors could be prevented by achieving a more robust inhibition of KRAS signaling mimicking the results obtained upon Kras ablation.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Animales , Ratones , Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/patología , Mutación , Oncogenes , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA