Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nanotechnology ; 31(47): 475603, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-32914764

RESUMEN

We analyse the morphological, structural and luminescence properties of self-assembled ZnO nanowires grown by chemical vapour transport on Si(001). The examination of nanowire ensembles by scanning electron microscopy reveals that a non-negligible fraction of nanowires merge together forming coalesced aggregates during growth. We show that the coalescence degree can be unambiguously quantified by a statistical analysis of the cross-sectional shape of the nanowires. The examination of the structural properties by x-ray diffraction evidences that the nanowires crystallize in the wurtzite phase, elongate along the c-axis, and are randomly oriented in plane. The luminescence of the ZnO nanowires, investigated by photoluminescence and cathodoluminescence spectroscopy, is characterized by two bands, the near-band-edge emission and the characteristic defect-related green luminescence of ZnO. The cross-correlation of scanning electron micrographs and monochromatic cathodoluminescence intensity maps reveals that: (i) coalescence joints act as a source of non-radiative recombination, and (ii) the luminescence of ZnO nanowires is inhomogeneously distributed at the single nanowire level. Specifically, the near-band-edge emission arises from the nanowire cores, while the defect-related green luminescence originates from the volume close to the nanowire sidewalls. Two-dimensional simulations of the optical guided modes supported by ZnO nanowires allow us to exclude waveguiding effects as the underlying reason for the luminescence inhomogeneities. We thus attribute this observation to the formation of a core-shell structure in which the shell is characterized by a high concentration of green-emitting radiative point defects as compared to the core.

2.
Nano Lett ; 19(9): 5938-5948, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31385709

RESUMEN

Several of the key issues of planar (Al,Ga)N-based deep-ultraviolet light-emitting diodes could potentially be overcome by utilizing nanowire heterostructures, exhibiting high structural perfection, and improved light extraction. Here, we study the spontaneous emission of GaN/(Al,Ga)N nanowire ensembles grown on Si(111) by plasma-assisted molecular beam epitaxy. The nanowires contain single GaN quantum disks embedded in long (Al,Ga)N nanowire segments essential for efficient light extraction. These quantum disks are found to exhibit intense light emission at unexpectedly high energies, namely, significantly above the GaN bandgap, and almost independent of the disk thickness. An in-depth investigation of the actual structure and composition of the nanowires reveals a spontaneously formed Al gradient both along and across the nanowire, resulting in a complex core/shell structure with an Al-deficient core and an Al-rich shell with continuously varying Al content along the entire length of the (Al,Ga)N segment. This compositional change along the nanowire growth axis induces a polarization doping of the shell that results in a degenerate electron gas in the disk, thus screening the built-in electric fields. The high carrier density not only results in the unexpectedly high transition energies but also in radiative lifetimes depending only weakly on temperature, leading to a comparatively high internal quantum efficiency of the GaN quantum disks up to room temperature.

3.
Nanotechnology ; 30(15): 154002, 2019 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-30641512

RESUMEN

A comprehensive description of the self-assembled formation of GaN nanowires (NWs) by plasma-assisted molecular beam epitaxy (PAMBE) on amorphous-Al x O y buffered Si is presented. The incubation time that precedes the formation of GaN NWs is analyzed as a function of the growth parameters using line-of-sight quadrupole mass spectrometry. We found that the incubation time follows an Arrhenius-type temperature dependence as well as an inverse power law with respect to the Ga flux. Our results reveal a weaker dependence of the incubation time on the Ga flux and faster nucleation on amorphous-Al x O y in comparison to conventional nitridated Si substrates. In addition, an unprecedented analysis of the dependence of the incubation time on the N flux demonstrates a stronger dependence of the incubation time on the N than on the Ga flux. Our results are summarized in growth diagrams to visualize the impact of the growth parameters on the incubation time. The diagrams can also be used to predict the incubation time for so far unexplored growth conditions. Finally, we measured the desorbing Ga flux upon the nucleation stage to determine the growth parameters that result in effective N-rich conditions as required for the self-assembled formation of GaN NWs. These original measurements were combined with the knowledge gained on the incubation time to create a growth map that illustrates the different growth regimes that can be obtained when GaN is grown on an amorphous-Al x O y buffer layer, regardless of the host substrate. Such a map provides a useful guide to induce the growth and control the morphology of GaN NW ensembles on amorphous-Al x O y . Results presented in this work allow to conclude that amorphous-Al x O y is preferred over nitridated Si as it enables shorter incubation times as well as a wider range of growth parameters to induce the self-assembled formation of GaN NWs in PAMBE.

4.
Nanotechnology ; 30(11): 114001, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30681980

RESUMEN

We investigate the occurrence of interfacial reactions during the self-assembled formation of GaN nanowires on Ti/Al2O3(0001) substrates in plasma-assisted molecular beam epitaxy. The conditions typical for the synthesis of ensembles of long nanowires (>1 µm) are found to promote several chemical reactions. In particular, the high substrate temperature leads to the interdiffusion of Al and O at the Ti/Al2O3 interface resulting in the formation of Al x Ti y O1-x-y and Ti x O1-x compounds. Furthermore, O is found to incorporate into the nanowires degrading their luminescence by heavy n-type doping. At the same time, impinging Ga and N species react with the substrate giving rise to the simultaneous formation of single-crystalline TiN and Ga x Ti y O1-x-y compounds. The latter compounds tend to form hillocks at the substrate surface, on top of which nanowires elongate with large tilt angles with respect to the substrate normal. We develop here a specific process in order to mitigate the detrimental effects of these interfacial reactions, while maintaining the low areal density and absence of coalescence which is the strong asset of growing nanowires on Ti/Al2O3. We find that the combination of a thick Ti film with an intentional low temperature nitridation step preceding nanowire growth and a limited growth temperature results in ensembles of uncoalesced and well-oriented nanowires with luminescence properties comparable to those of standard GaN nanowires prepared on Si. All these properties, together with the inherent benefits of integrating semiconductors on metals, make the present materials combination a promising platform for the further development of group-III nitride nanowire-based devices.

5.
Nanotechnology ; 28(42): 425602, 2017 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-28930094

RESUMEN

We report on plasma-assisted molecular beam epitaxial growth of almost randomly oriented, uniformly tilted, and vertically aligned self-assembled GaN nanowires (NWs), respectively, on different types of polycrystalline Ti foils. The NW orientation with respect to the substrate normal, which is affected by an in situ treatment of the foil surface before NW growth, depends on the crystallinity of the native oxide. Direct growth on the as-received foils results in the formation of ensembles of nearly randomly oriented NWs due to the strong roughening of the surface induced by chemical reactions between the impinging elements and Ti. Surface nitridation preceding the NW growth is found to reduce this roughening by transformation of the uppermost layers into TiN and TiO x N y species. These compounds are more stable against chemical reactions and facilitate the growth of uniformly oriented GaN NW ensembles on the surface of the individual grains of the polycrystalline Ti foils. If an amorphous oxide layer is present at the foil surface, vertically oriented NWs are obtained all across the substrate because this layer blocks the transfering of the epitaxial information from the underlying grains. The control of NW orientation and the understanding behind the achievement of vertically oriented NWs obtained in this study represent an important step towards the realization of GaN NW-based bendable devices on polycrystalline metal foils.

6.
Nanotechnology ; 27(32): 325601, 2016 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-27354451

RESUMEN

We present a comprehensive description of the self-assembled nucleation and growth of GaN nanowires (NWs) by plasma-assisted molecular beam epitaxy on amorphous Al x O y buffers (a-Al x O y ) prepared by atomic layer deposition. The results are compared with those obtained on nitridated Si(111). Using line-of-sight quadrupole mass spectrometry, we analyze in situ the incorporation of Ga starting from the incubation and nucleation stages till the formation of the final nanowire ensemble and observe qualitatively the same time dependence for the two types of substrates. However, on a-Al x O y the incubation time is shorter and the nucleation faster than on nitridated Si. Moreover, on a-Al x O y we observe a novel effect of decrease in incorporated Ga flux for long growth durations which we explain by coalescence of NWs leading to reduction of the GaN surface area where Ga may reside. Dedicated samples are used to analyze the evolution of surface morphology. In particular, no GaN nuclei are detected when growth is interrupted during the incubation stage. Moreover, for a-Al x O y , the same shape transition from spherical cap-shaped GaN crystallites to the NW-like geometry is found as it is known for nitridated Si. However, while the critical radius for this transition is only slightly larger for a-Al x O y than for nitridated Si, the critical height is more than six times larger for a-Al x O y . Finally, we observe that in fully developed NW ensembles, the substrate no longer influences growth kinetics and the same N-limited axial growth rate is measured on both substrates. We conclude that the same nucleation and growth processes take place on a-Al x O y as on nitridated Si and that these processes are of a general nature. Quantitatively, nucleation proceeds somewhat differently, which indicates the influence of the substrate, but once shadowing limits growth processes to the upper part of the NW ensemble, they are not affected anymore by the type of substrate.

7.
Nano Lett ; 15(6): 3743-7, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-26001039

RESUMEN

Vertical GaN nanowires are grown in a self-induced way on a sputtered Ti film by plasma-assisted molecular beam epitaxy. Both in situ electron diffraction and ex situ ellipsometry show that Ti is converted to TiN upon exposure of the surface to the N plasma. In addition, the ellipsometric data demonstrate this TiN film to be metallic. The diffraction data evidence that the GaN nanowires have a strict epitaxial relationship to this film. Photoluminescence spectroscopy of the GaN nanowires shows excitonic transitions virtually identical in spectral position, line width, and decay time to those of state-of-the-art GaN nanowires grown on Si. Therefore, the crystalline quality of the GaN nanowires grown on metallic TiN and on Si is equivalent. The freedom to employ metallic substrates for the epitaxial growth of semiconductor nanowires in high structural quality may enable novel applications that benefit from the associated high thermal and electrical conductivity as well as optical reflectivity.


Asunto(s)
Galio/química , Nanocables/química , Silicio/química , Titanio/química , Nanocables/ultraestructura
9.
Nanotechnology ; 26(8): 085605, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25656795

RESUMEN

AlN layers with thicknesses between 2 and 14 nm were grown on Si(111) substrates by molecular beam epitaxy. The effect of the AlN layer thickness on the morphology and nucleation time of spontaneously formed GaN nanowires (NWs) was investigated by scanning electron microscopy and line-of-sight quadrupole mass spectrometry, respectively. We observed that the alignment of the NWs grown on these layers improves with increasing layer thickness while their nucleation time decreases. Our results show that 4 nm is the smallest thickness of the AlN layer that allows the growth of well-aligned NWs with short nucleation time. Such an AlN buffer layer was successfully employed, together with a patterned SiOx mask, for the selective-area growth (SAG) of vertical GaN NWs. In addition, we fabricated light-emitting diodes (LEDs) from NW ensembles that were grown by means of self-organization phenomena on bare and on AlN-buffered Si substrates. A careful characterization of the optoelectronic properties of the two devices showed that the performance of NW-LEDs on bare and AlN-buffered Si is similar. Electrical conduction across the AlN buffer is facilitated by a high number of grain boundaries that were revealed by transmission electron microscopy. These results demonstrate that grainy AlN buffer layers on Si are compatible both with the SAG of GaN NWs and LED operation. Therefore, this study is a first step towards the fabrication of LEDs on Si substrates based on homogeneous NW ensembles.

10.
Nanotechnology ; 26(44): 445604, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26457772

RESUMEN

We investigate the influence of modified growth conditions during the spontaneous formation of GaN nanowires (NWs) on Si(111) in plasma-assisted molecular beam epitaxy. We find that a two-step growth approach, where the substrate temperature is increased during the nucleation stage, is an efficient method to gain control over the area coverage, average diameter, and coalescence degree of GaN NW ensembles. Furthermore, we also demonstrate that the growth conditions employed during the incubation time that precedes nanowire nucleation do not influence the properties of the final nanowire ensemble. Therefore, when growing GaN NWs at elevated temperatures or with low Ga/N ratios, the total growth time can be reduced significantly by using more favorable growth conditions for nanowire nucleation during the incubation time.

11.
Nanotechnology ; 25(45): 455702, 2014 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25327280

RESUMEN

We investigate the structural and optical properties of spontaneously formed GaN nanowires with different degrees of coalescence. This quantity is determined by an analysis of the cross-sectional area and perimeter of the nanowires obtained by plan-view scanning electron microscopy. X-ray diffraction experiments are used to measure the inhomogeneous strain in the nanowire ensembles as well as the orientational distribution of the nanowires. The comparison of the results obtained for GaN nanowire ensembles prepared on bare Si(111) and AlN buffered 6H-SiC(0001) reveals that the main source of the inhomogeneous strain is the random distortions caused by the coalescence of adjacent nanowires. The magnitude of the strain inhomogeneity induced by nanowire coalescence is found not to be determined solely by the coalescence degree, but also by the mutual misorientation of the coalesced nanowires. The linewidth of the donor-bound exciton transition in photoluminescence spectra does not exhibit a monotonic increase with the coalescence degree. In contrast, the comparison of the root mean square strain with the linewidth of the donor-bound exciton transition reveals a clear correlation: the higher the strain inhomogeneity, the larger the linewidth.

12.
Microsc Microanal ; 18(5): 1143-54, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23058502

RESUMEN

High-resolution monochromated electron energy loss spectroscopy (EELS) at subnanometric spatial resolution and <200 meV energy resolution has been used to assess the valence band properties of a distributed Bragg reflector multilayer heterostructure composed of InAlN lattice matched to GaN. This work thoroughly presents the collection of methods and computational tools put together for this task. Among these are zero-loss-peak subtraction and nonlinear fitting tools, and theoretical modeling of the electron scattering distribution. EELS analysis allows retrieval of a great amount of information: indium concentration in the InAlN layers is monitored through the local plasmon energy position and calculated using a bowing parameter version of Vegard Law. Also a dielectric characterization of the InAlN and GaN layers has been performed through Kramers-Kronig analysis of the Valence-EELS data, allowing band gap energy to be measured and an insight on the polytypism of the GaN layers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA