Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nat Immunol ; 11(5): 385-93, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20351693

RESUMEN

Francisella tularensis, the causative agent of tularemia, infects host macrophages, which triggers production of the proinflammatory cytokines interleukin 1beta (IL-1beta) and IL-18. We elucidate here how host macrophages recognize F. tularensis and elicit this proinflammatory response. Using mice deficient in the DNA-sensing inflammasome component AIM2, we demonstrate here that AIM2 is required for sensing F. tularensis. AIM2-deficient mice were extremely susceptible to F. tularensis infection, with greater mortality and bacterial burden than that of wild-type mice. Caspase-1 activation, IL-1beta secretion and cell death were absent in Aim2(-/-) macrophages in response to F. tularensis infection or the presence of cytoplasmic DNA. Our study identifies AIM2 as a crucial sensor of F. tularensis infection and provides genetic proof of its critical role in host innate immunity to intracellular pathogens.


Asunto(s)
Francisella tularensis/inmunología , Inmunidad Innata , Macrófagos/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/inmunología , Proteínas Nucleares/metabolismo , Tularemia/inmunología , Animales , Señalización del Calcio/inmunología , Caspasa 1/genética , Caspasa 1/inmunología , Caspasa 1/metabolismo , Células Cultivadas , Proteínas de Unión al ADN , Francisella tularensis/patogenicidad , Humanos , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/inmunología , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/inmunología , Interleucina-1beta/biosíntesis , Interleucina-1beta/genética , Interleucina-1beta/inmunología , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/inmunología , L-Lactato Deshidrogenasa/metabolismo , Macrófagos/inmunología , Macrófagos/patología , Ratones , Ratones Noqueados , Complejos Multiproteicos/genética , Complejos Multiproteicos/inmunología , Proteínas Nucleares/genética , Multimerización de Proteína , Tularemia/genética , Tularemia/metabolismo
2.
J Immunol ; 192(8): 3881-8, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24623131

RESUMEN

Caspase-1 activation is a central event in innate immune responses to many pathogenic infections and tissue damage. The NLRP3 inflammasome, a multiprotein scaffolding complex that assembles in response to two distinct steps, priming and activation, is required for caspase-1 activation. However, the detailed mechanisms of these steps remain poorly characterized. To investigate the process of LPS-mediated NLRP3 inflammasome priming, we used constitutively present pro-IL-18 as the caspase-1-specific substrate to allow study of the early events. We analyzed human monocyte caspase-1 activity in response to LPS priming, followed by activation with ATP. Within minutes of endotoxin priming, the NLRP3 inflammasome is licensed for ATP-induced release of processed IL-18, apoptosis-associated speck-forming complex containing CARD, and active caspase-1, independent of new mRNA or protein synthesis. Moreover, extracellular signal-regulated kinase 1 (ERK1) phosphorylation is central to the priming process. ERK inhibition and small interfering RNA-mediated ERK1 knockdown profoundly impair priming. In addition, proteasome inhibition prevents ERK phosphorylation and blocks priming. Scavenging reactive oxygen species with diphenylene iodonium also blocks both priming and ERK phosphorylation. These findings suggest that ERK1-mediated posttranslational modifications license the NLRP3 inflammasome to respond to the second signal ATP by inducing posttranslational events that are independent of new production of pro-IL-1ß and NOD-like receptor components.


Asunto(s)
Inflamasomas , Lipopolisacáridos/inmunología , Sistema de Señalización de MAP Quinasas , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Portadoras/metabolismo , Caspasa 1/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inmunidad Innata , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Modelos Biológicos , Monocitos/inmunología , Monocitos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR , Oxidantes/farmacología , Inhibidores de Proteínas Quinasas/farmacología
3.
Immunol Cell Biol ; 93(6): 591-9, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25601272

RESUMEN

Th2 cytokine IL-4 has been previously shown to suppress the production of proinflammatory cytokines in monocytes. However, the underlying molecular mechanism by which IL-4 signaling antagonizes proinflammatory responses is poorly characterized. In particular, whether IL-4 can modulate inflammasome signaling remains unknown. Here, we provide evidence that IL-4 suppresses NLRP3-dependent caspase-1 activation and the subsequent IL-1ß secretion but does not inhibit absent in melanoma 2 (AIM2)- or NLRC4 (NOD-like receptor family, CARD domain-containing 4)-dependent caspase-1 activation in THP-1 and mouse bone marrow-derived macrophages. Upon lipopolysaccharide (LPS) or LPS/ATP stimulation, IL-4 markedly inhibited the assembly of NLRP3 inflammasome, including NLRP3-dependent ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain) oligomerization, NLRP3-ASC interaction and NLRP3 speck-like oligomeric structure formation. The negative regulation of NLRP3 inflammasome by IL-4 was not due to the impaired mRNA or protein production of NLRP3 and proinflammatory cytokines. Supporting this observation, IL-4 attenuated NLRP3 inflammasome activation even in reconstituted NLRP3-expressing macrophages in which NLRP3 expression is not transcriptionally regulated by TLR-NF-κB signaling. Furthermore, the IL-4-mediated suppression of NLRP3 inflammasome was independent of STAT6-dependent transcription and mitochondrial reactive oxygen species (ROS). Instead, IL-4 inhibited subcellular redistribution of NLRP3 into mitochondria and microtubule polymerization upon NLRP3-activating stimulation. Our results collectively suggest that IL-4 could suppress NLRP3 inflammasome activation in a transcription-independent manner, thus providing an endogenous regulatory machinery to prevent excessive inflammasome activation.


Asunto(s)
Proteínas Portadoras/metabolismo , Inflamasomas/metabolismo , Interleucina-4/metabolismo , Transducción de Señal , Animales , Caspasa 1/metabolismo , Citocinas/genética , Citocinas/metabolismo , Activación Enzimática/efectos de los fármacos , Humanos , Mediadores de Inflamación/metabolismo , Interleucina-4/farmacología , Espacio Intracelular , Lipopolisacáridos/inmunología , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR , Unión Proteica , Transporte de Proteínas , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT6/metabolismo , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
4.
J Immunol ; 191(8): 3995-9, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24043892

RESUMEN

Activation of the NLRP3 inflammasome by diverse stimuli requires a priming signal from TLRs and an activation signal from purinergic receptors or pore-forming toxins. In this study, we demonstrate, through detailed analysis of NLRP3 activation in macrophages deficient in key downstream TLR signaling molecules, that MyD88 is required for an immediate early phase, whereas Toll/IL-1R domain-containing adapter inducing IFN-ß is required for a subsequent intermediate phase of posttranslational NLRP3 activation. Both IL-1R-associated kinase (IRAK) 1 and IRAK4 are critical for rapid activation of NLRP3 through the MyD88 pathway, but only IRAK1 is partially required in the Toll/IL-1R domain-containing adapter inducing IFN-ß pathway. IRAK1 and IRAK4 are also required for rapid activation of NLRP3 by Listeria monocytogenes, as deletion of IRAK1 or IRAK4 led to defective inflammasome activation. These findings define the pathways that lead to rapid NLRP3 activation and identify IRAK1 as a critical mediator of a transcription-independent,inflammasome-dependent early warning response to pathogenic infection.


Asunto(s)
Proteínas Portadoras/metabolismo , Inflamasomas , Quinasas Asociadas a Receptores de Interleucina-1/inmunología , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Receptores Toll-Like/inmunología , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Activación Enzimática , Interferón beta/metabolismo , Listeria monocytogenes/inmunología , Listeria monocytogenes/metabolismo , Macrófagos/enzimología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Receptores de Interleucina-1/metabolismo , Transducción de Señal , Receptores Toll-Like/metabolismo
5.
J Immunol ; 191(8): 4358-66, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24048902

RESUMEN

NLRP3 assembles an inflammasome complex that activates caspase-1 upon sensing various danger signals derived from pathogenic infection, tissue damage, and environmental toxins. How NLRP3 senses these various stimuli is still poorly understood, but mitochondria and mitochondrial reactive oxygen species have been proposed to play a critical role in NLRP3 activation. In this article, we provide evidence that the mitochondrial antiviral signaling protein MAVS associates with NLRP3 and facilitates its oligomerization leading to caspase-1 activation. In reconstituted 293T cells, full-length MAVS promoted NLRP3-dependent caspase-1 activation, whereas a C-terminal transmembrane domain-truncated mutant of MAVS (MAVS-ΔTM) did not. MAVS, but not MAVS-ΔTM, interacted with NLRP3 and triggered the oligomerization of NLRP3, suggesting that mitochondrial localization of MAVS and intact MAVS signaling are essential for activating the NLRP3 inflammasome. Supporting this, activation of MAVS signaling by Sendai virus infection promoted NLRP3-dependent caspase-1 activation, whereas knocking down MAVS expression clearly attenuated the activation of NLRP3 inflammasome by Sendai virus in THP-1 and mouse macrophages. Taken together, our results suggest that MAVS facilitates the recruitment of NLRP3 to the mitochondria and may enhance its oligomerization and activation by bringing it in close proximity to mitochondrial reactive oxygen species.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/metabolismo , Macrófagos/inmunología , Mitocondrias/metabolismo , Infecciones por Respirovirus/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Caspasa 1/metabolismo , Línea Celular , Activación Enzimática , Células HEK293 , Humanos , Inflamasomas/inmunología , Macrófagos/metabolismo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR , Interferencia de ARN , ARN Interferente Pequeño , Especies Reactivas de Oxígeno/metabolismo , Virus Sendai/inmunología , Transducción de Señal/inmunología
6.
Nature ; 458(7237): 509-13, 2009 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-19158676

RESUMEN

Host- and pathogen-associated cytoplasmic double-stranded DNA triggers the activation of a NALP3 (also known as cryopyrin and NLRP3)-independent inflammasome, which activates caspase-1 leading to maturation of pro-interleukin-1beta and inflammation. The nature of the cytoplasmic-DNA-sensing inflammasome is currently unknown. Here we show that AIM2 (absent in melanoma 2), an interferon-inducible HIN-200 family member that contains an amino-terminal pyrin domain and a carboxy-terminal oligonucleotide/oligosaccharide-binding domain, senses cytoplasmic DNA by means of its oligonucleotide/oligosaccharide-binding domain and interacts with ASC (apoptosis-associated speck-like protein containing a CARD) through its pyrin domain to activate caspase-1. The interaction of AIM2 with ASC also leads to the formation of the ASC pyroptosome, which induces pyroptotic cell death in cells containing caspase-1. Knockdown of AIM2 by short interfering RNA reduced inflammasome/pyroptosome activation by cytoplasmic DNA in human and mouse macrophages, whereas stable expression of AIM2 in the non-responsive human embryonic kidney 293T cell line conferred responsiveness to cytoplasmic DNA. Our results show that cytoplasmic DNA triggers formation of the AIM2 inflammasome by inducing AIM2 oligomerization. This study identifies AIM2 as an important inflammasome component that senses potentially dangerous cytoplasmic DNA, leading to activation of the ASC pyroptosome and caspase-1.


Asunto(s)
Citoplasma/genética , ADN/metabolismo , Inflamación/metabolismo , Inflamación/patología , Proteínas Nucleares/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis , Proteínas Adaptadoras de Señalización CARD , Caspasa 1/metabolismo , Muerte Celular , Línea Celular , Proteínas del Citoesqueleto/metabolismo , ADN/inmunología , Proteínas de Unión al ADN , Activación Enzimática , Humanos , Ratones , Proteínas Nucleares/química , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Unión Proteica
7.
J Biol Chem ; 288(16): 11378-83, 2013 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-23479736

RESUMEN

Human pyrin with gain-of-function mutations in its B30.2/SPRY domain causes the autoinflammatory disease familial Mediterranean fever by assembling an ASC-dependent inflammasome that activates caspase-1. Wild-type human pyrin can also form an inflammasome complex with ASC after engagement by autoinflammatory PSTPIP1 mutants. How the pyrin inflammasome is activated in the absence of disease-associated mutations is not yet known. We report here that ribotoxic stress triggers the assembly of the human pyrin inflammasome, leading to ASC oligomerization and caspase-1 activation in THP-1 macrophages and in a 293T cell line stably reconstituted with components of the pyrin inflammasome. Knockdown of pyrin and selective inhibition of p38 MAPK greatly attenuated caspase-1 activation by ribotoxic stress, whereas expression of the conditional mutant ΔMEKK3:ER* allowed the activation of caspase-1 without ribotoxic stress. Disruption of microtubules by colchicine also inhibited pyrin inflammasome activation by ribotoxic stress. Together, our results indicate that ribotoxic stress activates the human pyrin inflammasome through a mechanism that requires p38 MAPK signaling and microtubule stability.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Inflamasomas/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Estrés Fisiológico/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Caspasa 1/genética , Caspasa 1/metabolismo , Línea Celular , Colchicina/farmacología , Proteínas del Citoesqueleto/genética , Humanos , Inflamasomas/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Microtúbulos/genética , Microtúbulos/metabolismo , Mutación , Pirina , Estrés Fisiológico/efectos de los fármacos , Moduladores de Tubulina/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/genética
9.
J Biol Chem ; 287(43): 36617-22, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-22948162

RESUMEN

The NLRP3 inflammasome is a key component of the innate immune response to pathogenic infection and tissue damage. It is also involved in the pathogenesis of a number of human diseases, including gouty arthritis, silicosis, atherosclerosis, and type 2 diabetes. The assembly of the NLRP3 inflammasome requires a priming signal derived from pattern recognition or cytokine receptors, followed by a second signal derived from extracellular ATP, pore-forming toxins, or crystalline materials. How these two signals activate the NLRP3 inflammasome is not yet clear. Here, we show that in mouse macrophages, signaling by the pattern recognition receptor TLR4 through MyD88 can rapidly and non-transcriptionally prime NLRP3 by stimulating its deubiquitination. This process is dependent on mitochondrial reactive oxygen species production and can be inhibited by antioxidants. We further show that signaling by ATP can also induce deubiquitination of NLRP3 by a mechanism that is not sensitive to antioxidants. Pharmacological inhibition of NLRP3 deubiquitination completely blocked NLRP3 activation in both mouse and human cells, indicating that deubiquitination of NLRP3 is required for its activation. Our findings suggest that NLRP3 is activated by a two-step deubiquitination mechanism initiated by Toll-like receptor signaling and mitochondrial reactive oxygen species and further potentiated by ATP, which could explain how NLRP3 is activated by diverse danger signals.


Asunto(s)
Proteínas Portadoras/metabolismo , Inflamasomas/metabolismo , Macrófagos/metabolismo , Transducción de Señal , Ubiquitinación , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Animales , Proteínas Portadoras/genética , Células Cultivadas , Humanos , Inflamasomas/genética , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Macrófagos/patología , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR , Especies Reactivas de Oxígeno/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
10.
J Immunol ; 187(9): 4890-9, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21957143

RESUMEN

Streptococcus pneumoniae is a Gram-positive, extracellular bacterium that is responsible for significant mortality and morbidity worldwide. Pneumolysin (PLY), a cytolysin produced by all clinical isolates of the pneumococcus, is one of the most important virulence factors of this pathogen. We have previously reported that PLY is an essential factor for activation of caspase-1 and consequent secretion of IL-1ß and IL-18 in macrophages infected with S. pneumoniae. However, the host molecular factors involved in caspase-1 activation are still unclear. To further elucidate the mechanism of caspase-1 activation in macrophages infected with S. pneumoniae, we examined the involvement of inflammasomes in inducing this cellular response. Our study revealed that apoptosis-associated specklike protein containing a caspase recruitment domain (ASC), an adaptor protein for inflammasome receptors such as nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) and absent in melanoma 2 (AIM2), is essentially required for the induction of caspase-1 activation by S. pneumoniae. Caspase-1 activation was partially impaired in NLRP3(-/-) macrophages, whereas knockdown and knockout of AIM2 resulted in a clear decrease in caspase-1 activation in response to S. pneumoniae. These results suggest that ASC inflammasomes, including AIM2 and NLRP3, are critical for caspase-1 activation induced by S. pneumoniae. Furthermore, ASC(-/-) mice were more susceptible than wild-type mice to S. pneumoniae, with impaired secretion of IL-1ß and IL-18 into the bronchoalveolar lavage after intranasal infection, suggesting that ASC inflammasomes contribute to the protection of host from infection with PLY-producing S. pneumoniae.


Asunto(s)
Caspasa 1/metabolismo , Proteínas del Citoesqueleto/fisiología , Inmunidad Innata , Inflamasomas/fisiología , Infecciones Neumocócicas/inmunología , Infecciones Neumocócicas/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/biosíntesis , Proteínas Adaptadoras de Señalización CARD , Proteínas Portadoras/fisiología , Caspasa 1/deficiencia , Caspasa 1/genética , Línea Celular , Línea Celular Transformada , Células Cultivadas , Proteínas del Citoesqueleto/deficiencia , Proteínas del Citoesqueleto/genética , Proteínas de Unión al ADN , Resistencia a la Enfermedad/inmunología , Activación Enzimática/inmunología , Femenino , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Proteínas Nucleares/fisiología , Infecciones Neumocócicas/enzimología , Estreptolisinas/antagonistas & inhibidores , Estreptolisinas/biosíntesis
11.
J Immunol ; 185(5): 2670-4, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20679532

RESUMEN

The mechanisms by which the intracellular pathogen Francisella tularensis evades innate immunity are not well defined. We have identified a gene with homology to Escherichia coli mviN, a putative lipid II flippase, which F. tularensis uses to evade activation of innate immune pathways. Infection of mice with a F. tularensis mviN mutant resulted in improved survival and decreased bacterial burdens compared to infection with wild-type F. tularensis. The mviN mutant also induced increased absent in melanoma 2 inflammasome-dependent IL-1beta secretion and cytotoxicity in macrophages. The compromised in vivo virulence of the mviN mutant depended upon inflammasome activation, as caspase 1- and apoptosis-associated speck-like protein containing a caspase recruitment domain-deficient mice did not exhibit preferential survival following infection. This study demonstrates that mviN limits F. tularensis-induced absent in melanoma 2 inflammasome activation, which is critical for its virulence in vivo.


Asunto(s)
Proteínas Bacterianas/genética , Regulación hacia Abajo/inmunología , Francisella tularensis/genética , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Mutación , Proteínas Nucleares/metabolismo , Regulación hacia Arriba/inmunología , Factores de Virulencia/genética , Animales , Proteínas Bacterianas/fisiología , Vacunas Bacterianas/genética , Vacunas Bacterianas/inmunología , Células de la Médula Ósea/citología , Células de la Médula Ósea/inmunología , Proteínas de Unión al ADN , Regulación hacia Abajo/genética , Francisella tularensis/inmunología , Francisella tularensis/patogenicidad , Mediadores de Inflamación/metabolismo , Mediadores de Inflamación/fisiología , Activación de Macrófagos/genética , Macrófagos/microbiología , Macrófagos/patología , Melanoma/inmunología , Ratones , Ratones Noqueados , Mutación/genética , Mutación/inmunología , Regulación hacia Arriba/genética , Virulencia/genética , Virulencia/inmunología , Factores de Virulencia/fisiología
12.
J Biol Chem ; 285(13): 9792-9802, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20093358

RESUMEN

Activation of the inflammasome generates the pro-inflammatory cytokines interleukin-1 beta and -18, which are important mediators of inflammation. Abnormal activation of the inflammasome leads to many inflammatory diseases, including gout, silicosis, neurodegeneration, and genetically inherited periodic fever syndromes. Therefore, identification of small molecule inhibitors that target the inflammasome is an important step toward developing effective therapeutics for the treatment of inflammation. Here, we show that the herbal NF-kappaB inhibitory compound parthenolide inhibits the activity of multiple inflammasomes in macrophages by directly inhibiting the protease activity of caspase-1. Additional investigations of other NF-kappaB inhibitors revealed that the synthetic I kappaB kinase-beta inhibitor Bay 11-7082 and structurally related vinyl sulfone compounds selectively inhibit NLRP3 inflammasome activity in macrophages independent of their inhibitory effect on NF-kappaB activity. In vitro assays of the effect of parthenolide and Bay 11-7082 on the ATPase activity of NLRP3 demonstrated that both compounds inhibit the ATPase activity of NLRP3, suggesting that the inhibitory effect of these compounds on inflammasome activity could be mediated in part through their effect on the ATPase activity of NLRP3. Our results thus elucidate the molecular mechanism for the therapeutic anti-inflammatory activity of parthenolide and identify vinyl sulfones as a new class of potential therapeutics that target the NLRP3 inflammasome.


Asunto(s)
Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Nitrilos/farmacología , Sesquiterpenos/farmacología , Sulfonas/farmacología , Animales , Células de la Médula Ósea/metabolismo , Caspasa 1/metabolismo , Muerte Celular , Humanos , Immunoblotting , L-Lactato Deshidrogenasa/metabolismo , Macrófagos/metabolismo , Ratones , FN-kappa B/metabolismo , Sulfonas/química
13.
Arthritis Rheum ; 62(4): 1176-85, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20131254

RESUMEN

OBJECTIVE: To gain insight into the pathophysiology of an atypical familial form of an autoinflammatory disorder, characterized by autosomal-dominant sensorineural hearing loss, systemic inflammation, increased secretion of interleukin-1beta (IL-1beta), and the absence of any cutaneous manifestations, and to assess the functional consequences of a missense mutation identified in the leucine-rich repeat (LRR) domain of NLRP3. METHODS: Microsatellite markers were used to test the familial segregation of the NLRP3 locus with the disease phenotype. All NLRP3 exons were screened for mutations by sequencing. Functional assays were performed in HEK 293T cells to determine the effects of mutated (versus normal) NLRP3 proteins on NF-kappaB activation, caspase 1 signaling, and speck formation. RESULTS: A heterozygous NLRP3 missense mutation (p.Tyr859Cys) was identified in exon 6, which encodes the LRR domain of the protein. This mutation was found to segregate with the disease phenotype within the family, and had a moderate activating effect on speck formation and procaspase 1 processing and did not alter the inhibitory properties of NLRP3 on NF-kappaB signaling. CONCLUSION: This report is the first to describe a familial form of a cryopyrinopathy associated with a mutation outside of exon 3 of NLRP3. This finding, together with the known efficacy of anti-IL-1 treatments in these disorders, underlines the importance of screening all exons of NLRP3 in patients who present with atypical manifestations. In addition, the gain of function associated with this mutation in terms of activation of caspase 1 signaling was consistent with the observed inflammatory phenotype. Therefore, this study of the functional consequences of an LRR mutation sheds new light on the clinical relevance of in vitro assays.


Asunto(s)
Proteínas Portadoras/genética , Mutación de Línea Germinal , Enfermedades Autoinflamatorias Hereditarias/genética , Secuencia de Aminoácidos , Línea Celular , Citocinas/sangre , ADN/genética , Cartilla de ADN , Femenino , Variación Genética , Enfermedades Autoinflamatorias Hereditarias/fisiopatología , Humanos , Interleucina-1beta/sangre , Riñón/embriología , Masculino , Monocitos/patología , Madres , Mutación Missense , Proteína con Dominio Pirina 3 de la Familia NLR , Plásmidos , Hermanos
14.
J Immunol ; 183(2): 787-91, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19570822

RESUMEN

The IL-1 family cytokines are regulated on transcriptional and posttranscriptional levels. Pattern recognition and cytokine receptors control pro-IL-1beta transcription whereas inflammasomes regulate the proteolytic processing of pro-IL-1beta. The NLRP3 inflammasome, however, assembles in response to extracellular ATP, pore-forming toxins, or crystals only in the presence of proinflammatory stimuli. How the activation of gene transcription by signaling receptors enables NLRP3 activation remains elusive and controversial. In this study, we show that cell priming through multiple signaling receptors induces NLRP3 expression, which we identified to be a critical checkpoint for NLRP3 activation. Signals provided by NF-kappaB activators are necessary but not sufficient for NLRP3 activation, and a second stimulus such as ATP or crystal-induced damage is required for NLRP3 activation.


Asunto(s)
Proteínas Portadoras/genética , Regulación de la Expresión Génica/inmunología , Inflamación/metabolismo , FN-kappa B/fisiología , Receptores de Citocinas/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo , Animales , Presentación de Antígeno , Proteínas Portadoras/metabolismo , Células Cultivadas , Humanos , Macrófagos/citología , Macrófagos/inmunología , Ratones , Ratones Noqueados , Monocitos/citología , Monocitos/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR , Transducción de Señal , Activación Transcripcional
15.
Nat Commun ; 12(1): 4546, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34315884

RESUMEN

The NLRP3 inflammasome mediates the production of proinflammatory cytokines and initiates inflammatory cell death. Although NLRP3 is essential for innate immunity, aberrant NLRP3 inflammasome activation contributes to a wide variety of inflammatory diseases. Understanding the pathways that control NLRP3 activation will help develop strategies to treat these diseases. Here we identify WNK1 as a negative regulator of the NLRP3 inflammasome. Macrophages deficient in WNK1 protein or kinase activity have increased NLRP3 activation and pyroptosis compared with control macrophages. Mice with conditional knockout of WNK1 in macrophages have increased IL-1ß production in response to NLRP3 stimulation compared with control mice. Mechanistically, WNK1 tempers NLRP3 activation by balancing intracellular Cl- and K+ concentrations during NLRP3 activation. Collectively, this work shows that the WNK1 pathway has a critical function in suppressing NLRP3 activation and suggests that pharmacological inhibition of this pathway to treat hypertension might have negative clinical implications.


Asunto(s)
Cloruros/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo , Animales , Caspasa 1/metabolismo , Femenino , Imidazoles/farmacología , Inmunidad Innata/efectos de los fármacos , Interleucina-1beta/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Potasio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Piroptosis/efectos de los fármacos , Pirrolidinas/farmacología , Tamoxifeno/farmacología , Proteína Quinasa Deficiente en Lisina WNK 1/antagonistas & inhibidores
16.
J Clin Immunol ; 30(5): 693-702, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20490635

RESUMEN

Infection with Listeria monocytogenes can cause meningitis and septicemia in newborn, elderly, or immunocompromised individuals. Pregnant women are particularly susceptible to Listeria, leading to a potentially fatal infection. Cytosolic Listeria activates the proinflammatory caspase-1 and induces the processing and secretion of interleukins IL-1beta and IL-18 as well as caspase-1-dependent pyroptosis. This study elucidates the role of various inflammasome components of host macrophages in the proinflammatory response to infection with Listeria. Here, we have used macrophages from AIM2-, NLRC4-, NLRP3-, and ASC-deficient mice to demonstrate that AIM2, NLRC4, and NLRP3 inflammasomes as well as the adaptor protein ASC all contribute to activation of caspase-1 in Listeria-infected macrophages. We show that Listeria DNA, which escapes into the cytosol of infected macrophages, triggers AIM2 oligomerization, caspase-1 activation, and pyroptosis. Interestingly, we found that flagellin-deficient Listeria, like Francisella tularensis, is recognized primarily by the AIM2 inflammasome, as no caspase-1 activation or cell death was observed in AIM2-deficient macrophages infected with this Listeria mutant. We further show that prior priming of NLRC4-deficient macrophages with LPS is sufficient for Listeria-induced caspase-1 activation in these macrophages, suggesting that TLR4 signaling is important for activation of the AIM2 and NLRP3 inflammasomes by Listeria in the absence of NLRC4. Taken together, our results indicate that Listeria infection is sensed by multiple inflammasomes that collectively orchestrate a robust caspase-1 activation and proinflammatory response.


Asunto(s)
Inflamasomas/inmunología , Interleucina-1beta/metabolismo , Listeria monocytogenes/inmunología , Listeriosis/inmunología , Macrófagos/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Caspasa 1/metabolismo , Línea Celular Transformada , ADN Bacteriano/farmacología , Proteínas de Unión al ADN , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Flagelina/genética , Flagelina/inmunología , Interleucina-1beta/inmunología , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidad , Listeriosis/genética , Listeriosis/metabolismo , Macrófagos/inmunología , Macrófagos/patología , Ratones , Ratones Noqueados , Mutación/genética , Proteína con Dominio Pirina 3 de la Familia NLR , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Multimerización de Proteína/efectos de los fármacos , Multimerización de Proteína/genética
17.
Nature ; 425(6959): 721-7, 2003 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-14534547

RESUMEN

The mouse mutant mnd2 (motor neuron degeneration 2) exhibits muscle wasting, neurodegeneration, involution of the spleen and thymus, and death by 40 days of age. Degeneration of striatal neurons, with astrogliosis and microglia activation, begins at around 3 weeks of age, and other neurons are affected at later stages. Here we have identified the mnd2 mutation as the missense mutation Ser276Cys in the protease domain of the nuclear-encoded mitochondrial serine protease Omi (also known as HtrA2 or Prss25). Protease activity of Omi is greatly reduced in tissues of mnd2 mice but is restored in mice rescued by a bacterial artificial chromosome transgene containing the wild-type Omi gene. Deletion of the PDZ domain partially restores protease activity to the inactive recombinant Omi protein carrying the Ser276Cys mutation, suggesting that the mutation impairs substrate access or binding to the active site pocket. Loss of Omi protease activity increases the susceptibility of mitochondria to induction of the permeability transition, and increases the sensitivity of mouse embryonic fibroblasts to stress-induced cell death. The neurodegeneration and juvenile lethality in mnd2 mice result from this defect in mitochondrial Omi protease.


Asunto(s)
Mitocondrias/enzimología , Mutación Missense/genética , Enfermedades Neuromusculares/enzimología , Enfermedades Neuromusculares/genética , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Calcio/metabolismo , Caseínas/genética , Caseínas/metabolismo , Muerte Celular , Células Cultivadas , Mapeo Cromosómico , Cruzamientos Genéticos , Femenino , Serina Peptidasa A2 que Requiere Temperaturas Altas , Homocigoto , Humanos , Masculino , Ratones , Ratones Mutantes Neurológicos , Ratones Transgénicos , Proteínas Mitocondriales , Datos de Secuencia Molecular , Enfermedades Neuromusculares/metabolismo , Serina Endopeptidasas/química , Relación Estructura-Actividad
18.
Nat Commun ; 10(1): 1689, 2019 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-30976076

RESUMEN

Gasdermin E (GSDME/DFNA5) cleavage by caspase-3 liberates the GSDME-N domain, which mediates pyroptosis by forming pores in the plasma membrane. Here we show that GSDME-N also permeabilizes the mitochondrial membrane, releasing cytochrome c and activating the apoptosome. Cytochrome c release and caspase-3 activation in response to intrinsic and extrinsic apoptotic stimuli are significantly reduced in GSDME-deficient cells comparing with wild type cells. GSDME deficiency also accelerates cell growth in culture and in a mouse model of melanoma. Phosphomimetic mutation of the highly conserved phosphorylatable Thr6 residue of GSDME, inhibits its pore-forming activity, thus uncovering a potential mechanism by which GSDME might be regulated. Like GSDME-N, inflammasome-generated gasdermin D-N (GSDMD-N), can also permeabilize the mitochondria linking inflammasome activation to downstream activation of the apoptosome. Collectively, our results point to a role of gasdermin proteins in targeting the mitochondria to promote cytochrome c release to augment the mitochondrial apoptotic pathway.


Asunto(s)
Inflamasomas/metabolismo , Melanoma Experimental/patología , Mitocondrias/fisiología , Piroptosis/fisiología , Receptores de Estrógenos/metabolismo , Neoplasias Cutáneas/patología , Animales , Caspasa 3/metabolismo , Citocromos c/metabolismo , Fibroblastos , Técnicas de Inactivación de Genes , Células HEK293 , Células HeLa , Humanos , Macrófagos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Membranas Mitocondriales/metabolismo , Mutación , Fosforilación/fisiología , Cultivo Primario de Células , Dominios Proteicos/genética , Receptores de Estrógenos/genética , Treonina/metabolismo
19.
Nat Commun ; 9(1): 3001, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30069026

RESUMEN

The NLRP3 inflammasome responds to infection and tissue damage, and rapidly escalates the intensity of inflammation by activating interleukin (IL)-1ß, IL-18 and cell death by pyroptosis. How the NLRP3 inflammasome is negatively regulated is poorly understood. Here we show that NLRP3 inflammasome activation is suppressed by sumoylation. NLRP3 is sumoylated by the SUMO E3-ligase MAPL, and stimulation-dependent NLRP3 desumoylation by the SUMO-specific proteases SENP6 and SENP7 promotes NLRP3 activation. Defective NLRP3 sumoylation, either by NLRP3 mutation of SUMO acceptor lysines or depletion of MAPL, results in enhanced caspase-1 activation and IL-1ß release. Conversely, depletion of SENP7 suppresses NLRP3-dependent ASC oligomerisation, caspase-1 activation and IL-1ß release. These data indicate that sumoylation of NLRP3 restrains inflammasome activation, and identify SUMO proteases as potential drug targets for the treatment of inflammatory diseases.


Asunto(s)
Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Secuencia de Aminoácidos , Animales , Endopeptidasas/metabolismo , Células HEK293 , Humanos , Interleucina-1beta/metabolismo , Lisina/genética , Ratones , Mutación/genética , Proteína con Dominio Pirina 3 de la Familia NLR/química , Unión Proteica , Sumoilación , Ubiquitina-Proteína Ligasas/metabolismo
20.
Curr Biol ; 12(2): 125-30, 2002 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-11818063

RESUMEN

Inhibitors of apoptosis proteins (IAPs) interact with caspases and inhibit their protease activity, whereas the IAP-inhibitory proteins Smac/DIABLO in mammals and Reaper, Hid, and Grim in flies relieve IAP-mediated inhibition to induce cell death. Here we describe the functional characterization of the novel Drosophila cell death protein Sickle (Skl), which binds to IAPs and neutralizes their apoptotic inhibitory activity. Skl exhibits no sequence homology to Reaper, Hid, Grim, or Smac/DIABLO, except within the 4 residue N-terminal IAP binding motif. Skl interacts with Drosophila and mammalian IAPs and can promote caspase activation in the presence of IAPs. Consistent with these findings, expression of Skl in Drosophila and mammalian cell lines or in Drosophila embryos induces apoptosis. Skl can also synergize with Grim to induce cell death in the Drosophila eye imaginal disc. Based on biochemical and structural data, the N terminus of Skl, like that of the mammalian Smac/DIABLO, is absolutely required for its apoptotic and caspase-promoting activities and its ability to interact with IAPs. These findings point to conservation in the structure and function of the IAP-inhibitory proteins across species and suggest the existence of other family members.


Asunto(s)
Apoptosis/genética , Proteínas de Drosophila/genética , Drosophila/genética , Proteínas de Insectos/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Células Cultivadas , Clonación Molecular , Drosophila/embriología , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/genética , Modelos Moleculares , Datos de Secuencia Molecular , Neuropéptidos/genética , Péptidos/genética , Unión Proteica , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA