Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Clin Transl Immunology ; 11(1): e1372, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35106156

RESUMEN

OBJECTIVES: Exploiting the forces of human T cells for treatment has led to the current paradigm of emerging immunotherapy strategies. Genetic engineering of the T-cell receptor (TCR) redirects specificity, ablates alloreactivity and brings significant progress and off-the-shelf options to emerging adoptive T-cell transfer (ACT) approaches. Targeted CRISPR/Cas9-mediated double-strand breaks in the DNA enable knockout or knock-in engineering. METHODS: Here, we perform CRISPR/Cas9-mediated TCR knockout using a therapeutically relevant ribonucleoprotein (RNP) delivery method to assess the safety of genetically engineered T-cell products. Whole-genome sequencing was performed to analyse whether CRISPR/Cas9-mediated DNA double-strand break at the TCR locus is associated with off-target events in human primary T cells. RESULTS: TCRα chain and TCRß chain knockout leads to high on-target InDel frequency and functional knockout. None of the predicted off-target sites could be confirmed experimentally, whereas whole-genome sequencing and manual Integrative Genomics Viewer (IGV) review revealed 9 potential low-frequency off-target events genome-wide. Subsequent amplification and targeted deep sequencing in 7 of 7 evaluable loci did not confirm these low-frequency InDels. Therefore, off-target events are unlikely to be caused by the CRISPR/Cas9 engineering. CONCLUSION: The combinatorial approach of whole-genome sequencing and targeted deep sequencing confirmed highly specific genetic engineering using CRISPR/Cas9-mediated TCR knockout without potentially harmful exonic off-target effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA