Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proteomics ; 17(15-16)2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28643898

RESUMEN

Exposure to cow's milk constitutes one of the most common causes of food allergy. In addition, exposure to soy proteins has become relevant in a restricted proportion of milk allergic pediatric patients treated with soy formulae as a dairy substitute, because of the cross-allergenicity described between soy and milk proteins. We have previously identified several cross-reactive allergens between milk and soy that may explain this intolerance. The purpose of the present work was to identify epitopes in the purified αS1-casein and the recombinant soy allergen Gly m 5.0101 (Gly m 5) using an α-casein-specific monoclonal antibody (1D5 mAb) through two different approaches for epitope mapping, to understand cross-reactivity between milk and soy. The 1D5 mAb was immobilized onto magnetic beads, incubated with the peptide mixture previously obtained by enzymatic digestion of the allergens, and the captured peptides were identified by MALDI-TOF MS analysis. On a second approach, the peptide mixture was resolved by RP-HPLC and immunodominant peptides were identified by dot blot with the mAb. Finally, recognized peptides were sequenced by MALDI-TOF MS. This novel MS based approach led us to identify and characterize four peptides on α-casein and three peptides on Gly m 5 with a common core motif. Information obtained from these cross-reactive epitopes allows us to gain valuable insight into the molecular mechanisms of cross-reactivity, to further develop new and more effective vaccines for food allergy.


Asunto(s)
Alérgenos/inmunología , Reacciones Cruzadas , Mapeo Epitopo/métodos , Epítopos de Linfocito B/inmunología , Glycine max/química , Leche/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Secuencia de Aminoácidos , Animales , Caseínas/análisis , Bovinos , Epítopos de Linfocito B/análisis , Femenino , Humanos , Lactante , Proteínas de la Leche/análisis , Proteínas de la Leche/inmunología , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/inmunología , Proteínas de Soja/análisis
2.
J Antimicrob Chemother ; 71(1): 111-22, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26446080

RESUMEN

OBJECTIVES: The relationship between quinolone resistance acquisition and invasion impairment has been studied in some Salmonella enterica serovars. However, little information has been reported regarding the invasive human-restricted pathogen Salmonella Typhi. The aim of this study was to investigate the molecular mechanisms of quinolone resistance acquisition and its impact on virulence in this serovar. METHODS: Two antibiotic-resistant mutants (Ty_c1 and Ty_c2) were generated from a Salmonella Typhi clinical isolate (Ty_wt). The three strains were compared in terms of antimicrobial susceptibility, molecular mechanisms of resistance, gene expression of virulence-related factors, ability to invade eukaryotic cells (human epithelial cells and macrophages) and cytokine production. RESULTS: Multidrug resistance in Ty_c2 was attributed to AcrAB/TolC overproduction, decreased OmpF (both mediated by the mar regulon) and decreased OmpC. The two mutants showed a gradually reduced expression of virulence-related genes (invA, hilA, hilD, fliC and fimA), correlating with decreased motility, reduced infection of HeLa cells and impaired uptake by and intracellular survival in human macrophages. Moreover, Ty_c2 also showed reduced tviA expression. Additionally, we revealed a significant reduction in TNF-α and IL-1ß production and decreased NF-κB activation. CONCLUSIONS: In this study, we provide an in-depth characterization of the molecular mechanisms of antibiotic resistance in the Salmonella Typhi serovar and evidence that acquisition of antimicrobial resistance is concomitantly detected with a loss of virulence (epithelial cell invasion, macrophage phagocytosis and cytokine production). We suggest that the low prevalence of clinical isolates of Salmonella Typhi highly resistant to ciprofloxacin is due to poor immunogenicity and impaired dissemination ability of these isolates.


Asunto(s)
Antibacterianos/farmacología , Interacciones Huésped-Patógeno , Mutación , Quinolonas/farmacología , Salmonella typhi/efectos de los fármacos , Salmonella typhi/patogenicidad , Citocinas/metabolismo , Farmacorresistencia Bacteriana , Endocitosis , Células Epiteliales/microbiología , Perfilación de la Expresión Génica , Humanos , Macrófagos/microbiología , Pruebas de Sensibilidad Microbiana , Salmonella typhi/genética , Virulencia , Factores de Virulencia/biosíntesis
3.
J Antimicrob Chemother ; 70(11): 2981-6, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26311838

RESUMEN

OBJECTIVES: Acinetobacter nosocomialis has increasingly been reported as an opportunistic pathogen causing nosocomial infections. Although it is more susceptible to all antimicrobial agents than Acinetobacter baumannii, MDR clinical isolates have also been described. In addition, several studies have shown a high percentage of resistance to colistin. Therefore, in the present study we investigated the mechanism of resistance to colistin in this microorganism. METHODS: Colistin-resistant strains were selected from the original colistin-susceptible A. nosocomialis strain following multi-step mutant selection. Comparative genomic and proteomic analyses of both colistin-susceptible and colistin-resistant A. nosocomialis strains were performed. In addition, virulence was investigated using the Caenorhabditis elegans assay. RESULTS: The colistin-resistant mutants selected showed a lower resistance profile for other types of antibacterial agents together with a significant decrease in virulence. The LT50 (i.e. time required to kill 50% of the nematodes) for the colistin-susceptible strain (WT) was 7 days compared with 9 days for the colistin-resistant strain (256) (P < 0.0001). In the genomic studies, several mutations were observed in the lpxD genes, leading to the loss of LPS in the colistin-resistant strains. The proteomic studies showed several up- and down-regulated proteins that may be involved in colistin resistance or in a decrease in the resistance profile for several antibiotics. CONCLUSIONS: This study shows that the mechanism of resistance to colistin by A. nosocomialis is mainly associated with the loss of LPS due to mutations in the lpxD gene, although changes in the expression of some proteins cannot be ruled out. In addition, the acquisition of colistin resistance is related to a decrease in virulence.


Asunto(s)
Acinetobacter/efectos de los fármacos , Acinetobacter/patogenicidad , Antibacterianos/farmacología , Colistina/farmacología , Farmacorresistencia Bacteriana , Lipopolisacáridos/metabolismo , Factores de Virulencia/metabolismo , Acinetobacter/aislamiento & purificación , Infecciones por Acinetobacter/microbiología , Animales , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Caenorhabditis elegans , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Genoma Bacteriano , Mutación , Proteoma , Pase Seriado , Virulencia
4.
J Antimicrob Chemother ; 70(11): 3004-13, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26260130

RESUMEN

OBJECTIVES: The main objective of this study was to investigate the relationship among the in vivo acquisition of antimicrobial resistance in Pseudomonas aeruginosa clinical isolates, the underlying molecular mechanisms and previous exposure to antipseudomonal agents. METHODS: PFGE was used to study the molecular relatedness of the strains. The MICs of ceftazidime, cefepime, piperacillin/tazobactam, imipenem, meropenem, ciprofloxacin and amikacin were determined. Outer membrane protein profiles were assessed to study OprD expression. RT-PCR was performed to analyse ampC, mexB, mexD, mexF and mexY expression. The presence of mutations was analysed through DNA sequencing. RESULTS: We collected 17 clonally related paired isolates [including first positive samples (A) and those with MICs increased ≥4-fold (B)]. Most B isolates with increased MICs of imipenem, meropenem and ceftazidime became resistant to these drugs. The most prevalent resistance mechanisms detected were OprD loss (65%), mexB overexpression (53%), ampC derepression (29%), quinolone target gene mutations (24%) and increased mexY expression (24%). Five (29%) B isolates developed multidrug resistance. Meropenem was the most frequently (71%) received treatment, explaining the high prevalence of oprD mutations and likely mexB overexpression. Previous exposure to ceftazidime showed a higher impact on selection of increased MICs than previous exposure to piperacillin/tazobactam. CONCLUSIONS: Stepwise acquisition of resistance has a critical impact on the resistance phenotypes of P. aeruginosa, leading to a complex scenario for finding effective antimicrobial regimens. In the clinical setting, meropenem seems to be the most frequent driver of multidrug resistance development, while piperacillin/tazobactam, in contrast to ceftazidime, seems to be the ß-lactam least associated with the selection of resistance mechanisms.


Asunto(s)
Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana , Evolución Molecular , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Antibacterianos/farmacología , Proteínas de la Membrana Bacteriana Externa/genética , Electroforesis en Gel de Campo Pulsado , Perfilación de la Expresión Génica , Humanos , Unidades de Cuidados Intensivos , Pruebas de Sensibilidad Microbiana , Tipificación Molecular , Pseudomonas aeruginosa/clasificación , Reacción en Cadena en Tiempo Real de la Polimerasa , beta-Lactamasas/genética
5.
PLoS Comput Biol ; 9(6): e1003115, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23825940

RESUMEN

The pilus 2a backbone protein (BP-2a) is one of the most structurally and functionally characterized components of a potential vaccine formulation against Group B Streptococcus. It is characterized by six main immunologically distinct allelic variants, each inducing variant-specific protection. To investigate the molecular determinants driving the variant immunogenic specificity of BP-2a, in terms of single residue contributions, we generated six monoclonal antibodies against a specific protein variant based on their capability to recognize the polymerized pili structure on the bacterial surface. Three mAbs were also able to induce complement-dependent opsonophagocytosis killing of live GBS and target the same linear epitope present in the structurally defined and immunodominant domain D3 of the protein. Molecular docking between the modelled scFv antibody sequences and the BP-2a crystal structure revealed the potential role at the binding interface of some non-conserved antigen residues. Mutagenesis analysis confirmed the necessity of a perfect balance between charges, size and polarity at the binding interface to obtain specific binding of mAbs to the protein antigen for a neutralizing response.


Asunto(s)
Proteínas Bacterianas/metabolismo , Streptococcus agalactiae/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/inmunología , Proteínas Bacterianas/química , Proteínas Bacterianas/inmunología , Mapeo Epitopo , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Fagocitosis , Homología de Secuencia de Aminoácido , Streptococcus agalactiae/inmunología
6.
BMC Struct Biol ; 13: 19, 2013 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-24099525

RESUMEN

BACKGROUND: Increasing rates of antimicrobial resistance among uropathogens led, among other efforts, to the application of subtractive reverse vaccinology for the identification of antigens present in extraintestinal pathogenic E. coli (ExPEC) strains but absent or variable in non-pathogenic strains, in a quest for a broadly protective Escherichia coli vaccine. The protein coded by locus c5321 from CFT073 E. coli was identified as one of nine potential vaccine candidates against ExPEC and was able to confer protection with an efficacy of 33% in a mouse model of sepsis. c5321 (known also as EsiB) lacks functional annotation and structurally belongs to the Sel1-like repeat (SLR) family. Herein, as part of the general characterization of this potential antigen, we have focused on its structural properties. RESULTS: We report the 1.74 Å-resolution crystal structure of c5321 from CFT073 E. coli determined by Se-Met SAD phasing. The structure is composed of 11 SLR units in a topological organisation that highly resembles that found in HcpC from Helicobacter pylori, with the main difference residing in how the super-helical fold is stabilised. The stabilising effect of disulfide bridges in HcpC is replaced in c5321 by a strengthening of the inter-repeat hydrophobic core. A metal-ion binding site, uncharacteristic of SLR proteins, is detected between SLR units 3 and 4 in the region of the inter-repeat hydrophobic core. Crystal contacts are observed between the C-terminal tail of one molecule and the C-terminal amphipathic groove of a neighbouring one, resembling interactions between ligand and proteins containing tetratricopeptide-like repeats. CONCLUSIONS: The structure of antigen c5321 presents a mode of stabilization of the SLR fold different from that observed in close homologs of known structure. The location of the metal-ion binding site and the observed crystal contacts suggest a potential role in regulation of conformational flexibility and interaction with yet unidentified target proteins, respectively. These findings open new perspectives in both antigen design and for the identification of a functional role for this protective antigen.


Asunto(s)
Antígenos Bacterianos/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli Uropatógena/química , Secuencia de Aminoácidos , Animales , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/metabolismo , Antígenos CD1/inmunología , Sitios de Unión , Secuencia de Consenso , Cristalografía por Rayos X , Mapeo Epitopo , Proteínas de Escherichia coli/inmunología , Vacunas contra Escherichia coli/inmunología , Vacunas contra Escherichia coli/metabolismo , Helicobacter pylori/química , Helicobacter pylori/inmunología , Helicobacter pylori/metabolismo , Magnesio/metabolismo , Ratones , Modelos Moleculares , Conformación Proteica , Pliegue de Proteína , Estabilidad Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología Estructural de Proteína , Escherichia coli Uropatógena/inmunología
7.
J Proteome Res ; 11(6): 3305-16, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22582988

RESUMEN

Mycoplasma genitalium is a human pathogen associated with several sexually transmitted diseases. Proteomic technologies, along with other methods for global gene expression analysis, play a key role in understanding the mechanisms of bacterial pathogenesis and physiology. The proteome of M. genitalium, model of a minimal cell, has been extended using a combination of different proteomic approaches and technologies. The total proteome of this microorganism has been analyzed using gel-based and gel-free approaches, achieving the identification of 85.3% of the predicted ORFs. In addition, a comprehensive analysis of membrane subproteome has been performed. For this purpose, the TX-114 soluble fraction has been analyzed as well as the surface proteins, using cell-surface protein labeling with CyDye. Finally, the serological response of M. genitalium-infected patients and healthy donors has been analyzed to identify proteins that trigger immunological response. Here, we present the most extensive M. genitalium proteome analysis (85.3% of predicted ORFs), a comprehensive M. genitalium membrane analysis, and a study of the human serological response to M. genitalium.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Mycoplasma genitalium/metabolismo , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/metabolismo , Proteínas de la Membrana Bacteriana Externa/inmunología , Estudios de Casos y Controles , Humanos , Infecciones por Mycoplasma/sangre , Infecciones por Mycoplasma/inmunología , Infecciones por Mycoplasma/microbiología , Mycoplasma genitalium/inmunología , Proteoma/inmunología , Proteoma/metabolismo
8.
J Biol Chem ; 286(17): 14842-51, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21367854

RESUMEN

NarE is a 16 kDa protein identified from Neisseria meningitidis, one of the bacterial pathogens responsible for meningitis. NarE belongs to the family of ADP-ribosyltransferases (ADPRT) and catalyzes the transfer of ADP-ribose moieties to arginine residues in target protein acceptors. Many pathogenic bacteria utilize ADP-ribosylating toxins to modify and alter essential functions of eukaryotic cells. NarE is further the first ADPRT which could be shown to bind iron through a Fe-S center, which is crucial for the catalytic activity. Here we present the NMR solution structure of NarE, which shows structural homology to other ADPRTs. Using NMR titration experiments we could identify from Chemical Shift Perturbation data both the NAD binding site, which is in perfect agreement with a consensus sequence analysis between different ADPRTs, as well as the iron coordination site, which consists of 2 cysteines and 2 histidines. This atypical iron coordination is also capable to bind zinc. These results could be fortified by site-directed mutagenesis of the catalytic region, which identified two functionally crucial residues. We could further identify a main interaction region of NarE with antibodies using two complementary methods based on antibody immobilization, proteolytic digestion, and mass spectrometry. This study combines structural and functional features of NarE providing for the first time a characterization of an iron-dependent ADPRT.


Asunto(s)
ADP Ribosa Transferasas/química , Neisseria meningitidis/enzimología , Sitios de Unión , Dominio Catalítico , Hierro/metabolismo , Proteínas Hierro-Azufre/química , Espectroscopía de Resonancia Magnética , NAD/metabolismo , Conformación Proteica , Soluciones
9.
Appl Environ Microbiol ; 78(7): 2376-85, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22286993

RESUMEN

Escherichia coli ß-galactosidase is probably the most widely used reporter enzyme in molecular biology, cell biology, and biotechnology because of the easy detection of its activity. Its large size and tetrameric structure make this bacterial protein an interesting model for crystallographic studies and atomic mapping. In the present study, we investigate a version of Escherichia coli ß-galactosidase produced under oxidizing conditions, in the cytoplasm of an Origami strain. Our data prove the activation of this microbial enzyme under oxidizing conditions and clearly show the occurrence of a disulfide bond in the ß-galactosidase structure. Additionally, the formation of this disulfide bond is supported by the analysis of a homology model of the protein that indicates that two cysteines located in the vicinity of the catalytic center are sufficiently close for disulfide bond formation.


Asunto(s)
Disulfuros/química , Activación Enzimática , Escherichia coli/enzimología , beta-Galactosidasa/metabolismo , Cisteína/química , Cisteína/metabolismo , Disulfuros/metabolismo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Mutagénesis , Oxidación-Reducción , Conformación Proteica , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Relación Estructura-Actividad , beta-Galactosidasa/química , beta-Galactosidasa/genética
10.
Curr Microbiol ; 65(4): 465-74, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22782468

RESUMEN

Soybean lectin (SBL) participates in the recognition between Bradyrhizobium japonicum and soybean although its role remains unknown. To search for changes in the proteome in response to SBL, B. japonicum USDA 110 was incubated for 12 h in a C- and N-free medium with or without SBL (10 µg ml(-1)), and the soluble protein profiles were compared. Two polypeptides, S-adenosyl-methionine synthetase (MetK) and the 30S ribosomal protein S1 (RpsA), were found only in the fractions from rhizobia incubated without SBL. Transcript levels of metK and rpsA were not correlated with polypeptide levels, indicating that there was regulation at translation. In support of this proposal, the 5' translation initiation-region of rpsA mRNA contained folding elements as those involved in regulation of its translation in other species. Disappearance of MetK and RpsA from the soluble protein fractions of SBL-treated rhizobia suggests that SBL might have attenuated the nutritional stress response of B. japonicum.


Asunto(s)
Bradyrhizobium/efectos de los fármacos , Bradyrhizobium/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Glycine max/química , Lectinas/farmacología , Metionina Adenosiltransferasa/antagonistas & inhibidores , Proteínas Ribosómicas/antagonistas & inhibidores , Carbono/metabolismo , Medios de Cultivo/química , Lectinas/aislamiento & purificación , Nitrógeno/metabolismo , Semillas/química
11.
J Biol Chem ; 285(39): 30126-38, 2010 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-20592031

RESUMEN

We present an interdisciplinary approach that, by incorporating a range of experimental and computational techniques, allows the identification and characterization of functional/immunogenic domains. This approach has been applied to ArtJ, an arginine-binding protein whose orthologs in Chlamydiae trachomatis (CT ArtJ) and pneumoniae (CPn ArtJ) are shown to have different immunogenic properties despite a high sequence similarity (60% identity). We have solved the crystallographic structures of CT ArtJ and CPn ArtJ, which are found to display a type II transporter fold organized in two α-ß domains with the arginine-binding region at their interface. Although ArtJ is considered to belong to the periplasm, we found that both domains contain regions exposed on the bacterial surface. Moreover, we show that recombinant ArtJ binds to epithelial cells in vitro, suggesting a role for ArtJ in host-cell adhesion during Chlamydia infection. Experimental epitope mapping and computational analysis of physicochemical determinants of antibody recognition revealed that immunogenic epitopes reside mainly in the terminal (D1) domain of both CPn and CT ArtJ, whereas the surface properties of the respective binding-prone regions appear sufficiently different to assume divergent immunogenic behavior. Neutralization assays revealed that sera raised against CPn ArtJ D1 partially reduce both CPn and CT infectivity in vitro, suggesting that functional antibodies directed against this domain may potentially impair chlamydial infectivity. These findings suggest that the approach presented here, combining functional and structure-based analyses of evolutionary-related antigens can be a valuable tool for the identification of cross-species immunogenic epitopes for vaccine development.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/química , Proteínas Bacterianas/química , Vacunas Bacterianas/química , Chlamydia trachomatis/química , Chlamydophila pneumoniae/química , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/inmunología , Adhesión Bacteriana/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Vacunas Bacterianas/genética , Vacunas Bacterianas/inmunología , Infecciones por Chlamydia/prevención & control , Chlamydia trachomatis/genética , Chlamydia trachomatis/inmunología , Infecciones por Chlamydophila/prevención & control , Chlamydophila pneumoniae/genética , Chlamydophila pneumoniae/inmunología , Cristalografía por Rayos X , Mapeo Epitopo/métodos , Estructura Terciaria de Proteína
12.
Commun Biol ; 4(1): 448, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33837253

RESUMEN

In Pseudomonas aeruginosa, Ttg2D is the soluble periplasmic phospholipid-binding component of an ABC transport system thought to be involved in maintaining the asymmetry of the outer membrane. Here we use the crystallographic structure of Ttg2D at 2.5 Å resolution to reveal that this protein can accommodate four acyl chains. Analysis of the available structures of Ttg2D orthologs shows that they conform a new substrate-binding-protein structural cluster. Native and denaturing mass spectrometry experiments confirm that Ttg2D, produced both heterologously and homologously and isolated from the periplasm, can carry two diacyl glycerophospholipids as well as one cardiolipin. Binding is notably promiscuous, allowing the transport of various molecular species. In vitro binding assays coupled to native mass spectrometry show that binding of cardiolipin is spontaneous. Gene knockout experiments in P. aeruginosa multidrug-resistant strains reveal that the Ttg2 system is involved in low-level intrinsic resistance against certain antibiotics that use a lipid-mediated pathway to permeate through membranes.


Asunto(s)
Proteínas Bacterianas/genética , Glicerofosfolípidos/metabolismo , Proteínas de Transporte de Membrana/genética , Periplasma/metabolismo , Pseudomonas aeruginosa/genética , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana/genética , Proteínas de Transporte de Membrana/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo
13.
Front Microbiol ; 9: 928, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867838

RESUMEN

Infections by Streptococcus pneumoniae are a major cause of morbidity and mortality worldwide, often causing community-acquired pneumonia, otitis media and also bacteremia and meningitis. Studies on S. pneumoniae are mainly focused on its virulence or capacity to evade the host immune system, but little is known about the injury caused in lungs during a pneumococcal infection. Herein we investigated this issue comparing the proteome profile of lungs from S. pneumoniae-infected mice with control mice by means of difference gel electrophoresis (DIGE) technology. In order to obtain reliable results three biological replicas were used, and four technical replicas were carried out in each biological replica. Proteomic comparison was performed at two time points: 24 and 48 h post infection. A total of 91 proteins were identified with different abundance. We found important changes in the protein profiles during pneumococcal infection mainly associated with regulation of vesicle-mediated transport, wound healing, and cytoskeleton organization. In conclusion, the results obtained show that the cytoskeleton of the host cell is modified in S. pneumoniae infection.

14.
Sci Rep ; 7(1): 15291, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-29127378

RESUMEN

Salmonella possesses virulence determinants that allow replication under extreme conditions and invasion of host cells, causing disease. Here, we examined four putative genes predicted to encode membrane proteins (ydiY, ybdJ, STM1441 and ynaJ) and a putative transcriptional factor (yedF). These genes were identified in a previous study of a S. Typhimurium clinical isolate and its multidrug-resistant counterpart. For STM1441 and yedF a reduced ability to interact with HeLa cells was observed in the knock-out mutants, but an increase in this ability was absent when these genes were overexpressed, except for yedF which phenotype was rescued when yedF was restored. In the absence of yedF, decreased expression was seen for: i) virulence-related genes involved in motility, chemotaxis, attachment and survival inside the host cell; ii) global regulators of the invasion process (hilA, hilC and hilD); and iii) factors involved in LPS biosynthesis. In contrast, an increased expression was observed for anaerobic metabolism genes. We propose yedF is involved in the regulation of Salmonella pathogenesis and contributes to the activation of the virulence machinery. Moreover, we propose that, when oxygen is available, yedF contributes sustained repression of the anaerobic pathway. Therefore, we recommend this gene be named vrf, for virulence-related factor.


Asunto(s)
Proteínas Bacterianas , Farmacorresistencia Bacteriana Múltiple , Salmonella typhimurium , Factores de Transcripción , Factores de Virulencia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células HeLa , Humanos , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
15.
Pediatr Infect Dis J ; 36(11): 1079-1086, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28650938

RESUMEN

BACKGROUND: Escherichia coli is one of the most frequent causes of late-onset neonatal sepsis. The aim of this study was to characterize an outbreak of neonatal sepsis occurring in the neonatal intensive care unit of the Hospital Clinic of Barcelona from April to August 2013. METHODS: After presentation of the index case, all E. coli isolates from previously hospitalized neonates, health-care workers and neonates admitted to the neonatal intensive care unit from April to October 2013 were tested for K1 antigen positivity and epidemiologically compared by pulse-field gel electrophoresis. Furthermore, the E. coli K1 strains collected from neonates during this period were analyzed by different methods (serotyping, phylotyping, polymerase chain reaction of virulence factors, antimicrobial resistance and "in vitro" assays in Human Brain Microvascular Endothelial Cells (HBMEC)). RESULTS: An E. coli O18:K1:H7 sequence type 95 and phylogenetic group B2 strain was the cause of the outbreak involving 6 preterm neonates: 1 with late septicemia because of a urinary focus and 5 with late-onset septicemia and meningitis, 3 of whom died. All showed the same pulsotype, full resistance to ampicillin and intermediate resistance to gentamicin. The outbreak strain carried the pathogenicity island (PAI) IIJ96-like domain that could explain the high-grade bacteremia necessary to develop meningitis. CONCLUSIONS: All the E. coli isolates responsible for this outbreak belonged to a single clone suggesting a common source of infection, and it was categorized as O18:K1:H7. Despite the bacteria's pathogenicity has an important role in the severity of infection, the host-associated factors were crucial for the fatal outcomes.


Asunto(s)
Brotes de Enfermedades/estadística & datos numéricos , Infecciones por Escherichia coli/microbiología , Escherichia coli/genética , Escherichia coli/patogenicidad , Unidades de Cuidado Intensivo Neonatal , Bacteriemia/epidemiología , Bacteriemia/microbiología , Estudios de Cohortes , Infecciones por Escherichia coli/epidemiología , Femenino , Humanos , Lactante , Recién Nacido , Masculino , España/epidemiología , Factores de Virulencia/genética
16.
Sci Rep ; 6: 26221, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27193696

RESUMEN

A key issue towards developing new chemotherapeutic approaches to fight Mycobacterium tuberculosis is to understand the mechanisms underlying drug resistance. Previous studies have shown that genes Rv1686c-Rv1687c and Rv3161c, predicted to encode an ATP-binding cassette transporter and a dioxygenase respectively, are induced in the presence of triclosan and other antimicrobial compounds. Therefore a possible role in drug resistance has been suggested for the products of these genes although no functional studies have been done. The aim of the present study was to clarify the role of Rv1686c-Rv1687c and Rv3161c in M. tuberculosis resistance to triclosan and other drugs. To this end, deficient mutants and overproducing strains for both systems were constructed and their minimal inhibitory concentration (MIC) against over 20 compounds, including triclosan, was evaluated. Unexpectedly, no differences between the MIC of these strains and the wild-type H37Rv were observed for any of the compounds tested. Moreover the MIC of triclosan was not affected by efflux pump inhibitors that inhibit the activity of transporters similar to the one encoded by Rv1686c-Rv1687c. These results suggest that none of the two systems is directly involved in M. tuberculosis resistance to triclosan or to any of the antimicrobials tested.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/biosíntesis , Antiinfecciosos Locales/metabolismo , Dioxigenasas/biosíntesis , Farmacorresistencia Bacteriana , Mycobacterium tuberculosis/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Triclosán/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Dioxigenasas/genética , Eliminación de Gen , Expresión Génica , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/genética
17.
J Proteomics ; 142: 122-9, 2016 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-27185551

RESUMEN

UNLABELLED: Stenotrophomonas maltophilia is a Gram-negative pathogen with emerging nosocomial incidence that displays a high genomic diversity, complicating the study of its pathogenicity, virulence and resistance factors. The interaction of bacterial pathogens with host cells is largely mediated by outer membrane proteins (OMPs). Indeed, several OMPs of Gram-negative bacteria have been recognized as important virulence factors and targets for host immune recognition or to be involved in mechanisms of resistance to antimicrobials. OMPs are also present in outer membrane vesicles (OMVs), which bacteria constitutively secrete to the extracellular milieu and are essential for bacterial survival and pathogenesis. Here, we report the characterization of the OMP and native OMV subproteomes of a clinical isolate (M30) and a collection strain (ATCC13637) of S. maltophilia. We had previously shown that the ATCC13637 strain has an attenuated phenotype in a zebrafish model of infection, as well as a distinct susceptibility profile against a panel of antimicrobials. The protein profiles of the OMP and OMV subproteomes of these two strains and their differences consequently point at pathogenesis, virulence or resistance proteins, such as two variants of the quorum-sensing factor Ax21 that are found to be highly abundant in the OMP fraction and exported to OMVs. BIOLOGICAL SIGNIFICANCE: Stenotrophomonas maltophilia is rapidly climbing positions in the ranking of multidrug-resistant pathogens that are frequently isolated in hospital environments. Being an emerging human pathogen, the knowledge on the factors determining the pathogenicity, virulence and resistance traits of this microorganism is still scarce. Outer membrane proteins (OMPs) and vesicles (OMVs) are key elements for the interaction of Gram-negative bacteria with their environment -including the host-and have fundamental roles in both infection and resistance processes. The present study sets a first basis for a phenotype-dependent characterisation of the OMP subproteome of S. maltophilia and complements very recent work on the OMV subproteome of this species. The variability found among even two strains demonstrates once more that the analysis of genotypically and phenotypically distinct isolates under various conditions will be required before we can draw a significant picture of the OMP and OMV subproteomes of S. maltophilia.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/análisis , Proteómica/métodos , Stenotrophomonas maltophilia/patogenicidad , Factores de Virulencia/análisis , Animales , Electroforesis en Gel de Poliacrilamida , Interacciones Huésped-Patógeno/inmunología , Humanos , Stenotrophomonas maltophilia/química , Stenotrophomonas maltophilia/aislamiento & purificación , Espectrometría de Masas en Tándem , Pez Cebra
18.
Artículo en Inglés | MEDLINE | ID: mdl-26029670

RESUMEN

Quorum Sensing (QS) mediated by Acyl Homoserine Lactone (AHL) molecules are probably the most widespread and studied among Gram-negative bacteria. Canonical AHL systems are composed by a synthase (LuxI family) and a regulator element (LuxR family), whose genes are usually adjacent in the genome. However, incomplete AHL-QS machinery lacking the synthase LuxI is frequently observed in Proteobacteria, and the regulator element is then referred as LuxR solo. It has been shown that certain LuxR solos participate in interspecific communication by detecting signals produced by different organisms. In the case of Stenotrophomonas maltophilia, a preliminary genome sequence analysis revealed numerous putative luxR genes, none of them associated to a luxI gene. From these, the hypothetical LuxR solo Smlt1839, here designated SmoR, presents a conserved AHL binding domain and a helix-turn-helix DNA binding motif. Its genomic organization-adjacent to hchA gene-indicate that SmoR belongs to the new family "LuxR regulator chaperone HchA-associated." AHL-binding assays revealed that SmoR binds to AHLs in-vitro, at least to oxo-C8-homoserine lactone, and it regulates operon transcription, likely by recognizing a conserved palindromic regulatory box in the hchA upstream region. Supplementation with concentrated supernatants from Pseudomonas aeruginosa, which contain significant amounts of AHLs, promoted swarming motility in S. maltophilia. Contrarily, no swarming stimulation was observed when the P. aeruginosa supernatant was treated with the lactonase AiiA from Bacillus subtilis, confirming that AHL contributes to enhance the swarming ability of S. maltophilia. Finally, mutation of smoR resulted in a swarming alteration and an apparent insensitivity to the exogenous AHLs provided by P. aeruginosa. In conclusion, our results demonstrate that S. maltophilia senses AHLs produced by neighboring bacteria through the LuxR solo SmoR, regulating population behaviors such as swarming motility.


Asunto(s)
Acil-Butirolactonas/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , ADN Bacteriano/química , ADN Bacteriano/genética , Locomoción , Datos de Secuencia Molecular , Pseudomonas aeruginosa/química , Análisis de Secuencia de ADN , Stenotrophomonas maltophilia/fisiología
19.
ACS Chem Biol ; 10(3): 803-12, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25495888

RESUMEN

Burkholderia pseudomallei is the etiological agent of melioidosis, a severe endemic disease in South-East Asia, causing septicemia and organ failure with high mortality rates. Current treatments and diagnostic approaches are largely ineffective. The development of new diagnostic tools and vaccines toward effective therapeutic opportunities against B. pseudomallei is therefore an urgent priority. In the framework of a multidisciplinary project tackling melioidosis through reverse and structural vaccinology, BPSL1050 was identified as a candidate for immunodiagnostic and vaccine development based on its reactivity against the sera of melioidosis patients. We determined its NMR solution structure and dynamics, and by novel computational methods we predicted immunogenic epitopes that once synthesized were able to elicit the production of antibodies inducing the agglutination of the bacterium and recognizing both BPSL1050 and B. pseudomallei crude extracts. Overall, these results hold promise for novel chemical biology approaches in the discovery of new diagnostic and prophylactic tools against melioidosis.


Asunto(s)
Anticuerpos Antibacterianos/química , Antígenos Bacterianos/química , Burkholderia pseudomallei/efectos de los fármacos , Epítopos/química , Melioidosis/inmunología , Pruebas de Aglutinación , Secuencia de Aminoácidos , Animales , Anticuerpos Antibacterianos/biosíntesis , Anticuerpos Antibacterianos/farmacología , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Linfocitos B/inmunología , Linfocitos B/microbiología , Linfocitos B/patología , Burkholderia pseudomallei/química , Burkholderia pseudomallei/inmunología , Mapeo Epitopo , Epítopos/genética , Epítopos/inmunología , Humanos , Sueros Inmunes/química , Sueros Inmunes/inmunología , Melioidosis/sangre , Melioidosis/microbiología , Melioidosis/patología , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Ingeniería de Proteínas , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Conejos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Relación Estructura-Actividad
20.
PLoS Negl Trop Dis ; 9(7): e0003917, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26222657

RESUMEN

Burkholderia pseudomallei is a Gram-negative bacterium responsible for melioidosis, a serious and often fatal infectious disease that is poorly controlled by existing treatments. Due to its inherent resistance to the major antibiotic classes and its facultative intracellular pathogenicity, an effective vaccine would be extremely desirable, along with appropriate prevention and therapeutic management. One of the main subunit vaccine candidates is flagellin of Burkholderia pseudomallei (FliCBp). Here, we present the high resolution crystal structure of FliCBp and report the synthesis and characterization of three peptides predicted to be both B and T cell FliCBp epitopes, by both structure-based in silico methods, and sequence-based epitope prediction tools. All three epitopes were shown to be immunoreactive against human IgG antibodies and to elicit cytokine production from human peripheral blood mononuclear cells. Furthermore, two of the peptides (F51-69 and F270-288) were found to be dominant immunoreactive epitopes, and their antibodies enhanced the bactericidal activities of purified human neutrophils. The epitopes derived from this study may represent potential melioidosis vaccine components.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/inmunología , Burkholderia pseudomallei/inmunología , Flagelina/química , Flagelina/inmunología , Melioidosis/microbiología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Burkholderia pseudomallei/química , Burkholderia pseudomallei/genética , Mapeo Epitopo , Epítopos de Linfocito B/química , Epítopos de Linfocito B/genética , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/química , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Flagelina/genética , Humanos , Leucocitos Mononucleares/inmunología , Melioidosis/inmunología , Datos de Secuencia Molecular , Fagocitosis , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA