Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Neural Transm (Vienna) ; 131(1): 1-11, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37851107

RESUMEN

Over the years, evidence has accumulated on a possible contributive role of the cytosolic quinone reductase NQO2 in models of dopamine neuron degeneration induced by parkinsonian toxin, but most of the data have been obtained in vitro. For this reason, we asked the question whether NQO2 is involved in the in vivo toxicity of MPTP, a neurotoxin classically used to model Parkinson disease-induced neurodegeneration. First, we show that NQO2 is expressed in mouse substantia nigra dopaminergic cell bodies and in human dopaminergic SH-SY5Y cells as well. A highly specific NQO2 inhibitor, S29434, was able to reduce MPTP-induced cell death in a co-culture system of SH-SY5Y cells with astrocytoma U373 cells but was inactive in SH-SY5Y monocultures. We found that S29434 only marginally prevents substantia nigra tyrosine hydroxylase+ cell loss after MPTP intoxication in vivo. The compound produced a slight increase of dopaminergic cell survival at day 7 and 21 following MPTP treatment, especially with 1.5 and 3 mg/kg dosage regimen. The rescue effect did not reach statistical significance (except for one experiment at day 7) and tended to decrease with the 4.5 mg/kg dose, at the latest time point. Despite the lack of robust protective activity of the inhibitor of NQO2 in the mouse MPTP model, we cannot rule out a possible role of the enzyme in parkinsonian degeneration, particularly because it is substantially expressed in dopaminergic neurons.


Asunto(s)
Intoxicación por MPTP , Neuroblastoma , Ratones , Humanos , Animales , Neuronas Dopaminérgicas/metabolismo , Sustancia Negra/metabolismo , Dopamina/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
2.
J Pineal Res ; 76(1): e12926, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38146602

RESUMEN

Melatonin is a small natural compound, so called a neuro-hormone that is synthesized mainly in pineal gland in animals. Its main role is to master the clock of the body, under the surveillance of light. In other words, it transfers the information concerning night and day to the peripheral organs which, without it, could not "know" which part of the circadian rhythm the body is in. Besides its main circadian and circannual rhythms mastering, melatonin is reported to be a radical scavenger and/or an antioxidant. Because radical scavengers are chemical species able to neutralize highly reactive and toxic species such as reactive oxygen species, one would like to transfer this property to living system, despite impossibilities already largely reported in the literature. In the present commentary, we refresh the memory of the readers with this notion of radical scavenger, and review the possible evidence that melatonin could be an in vivo radical scavenger, while we only marginally discuss here the fact that melatonin is a molecular antioxidant, a feature that merits a review on its own. We conclude four things: (i) the evidence that melatonin is a scavenger in acellular systems is overwhelming and could not be doubted; (ii) the transposition of this property in living (animal) systems is (a) theoretically impossible and (b) not proven in any system reported in the literature where most of the time, the delay of the action of melatonin is over several hours, thus signing a probable induction of cellular enzymatic antioxidant defenses; (iii) this last fact needs a confirmation through the discovery of a nuclear factor-a key relay in induction processes-that binds melatonin and is activated by it and (iv) we also gather the very important description of the radical scavenging capacity of melatonin in acellular systems that is now proven and shared by many other double bond-bearing molecules. We finally discussed briefly on the reason-scientific or else-that led this description, and the consequences of this claim, in research, in physiology, in pathology, but most disturbingly in therapeutics where a vast amount of money, hope, and patient bien-être are at stake.


Asunto(s)
Melatonina , Glándula Pineal , Animales , Humanos , Melatonina/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Glándula Pineal/metabolismo , Ritmo Circadiano/fisiología , Especies Reactivas de Oxígeno/metabolismo
3.
Mol Biol Rep ; 49(1): 149-161, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34718939

RESUMEN

BACKGROUND: Posttranslational modifications of proteins are catalyzed by a large family of enzymes catalyzing many chemical modifications. One can hijack the natural use of those enzymes to modify targeted proteins with synthetic chemical moieties. The lipoic acid ligase LplA mutants can be used to introduce onto the lysine sidechain lipoic acid moiety synthetic analogues. Substrate protein candidates of the ligase must obey a few a priori rules. METHODS AND RESULTS: In the present report, we technically detailed the use of a cell line stably expressing both the ligase and a model protein (thioredoxin). Although the goal can be reach, and the protein visualized in situ, many experimental difficulties must be fixed. The sequence of events comprises (i) in cellulo labeling of the target protein with a N3-lipoic acid derivative catalyzed by the mutant ligase, (ii) the further introduction by click chemistry onto this lysine sidechain of a fluorophore and (iii) the following of the labeled protein in living cells. One of the main difficulties was to assess the click chemistry step onto the living cells, because images from both control and experimental cells were similar. Alternatively, we describe at that stage, the preferred use of another technique: the Halo-Tag one that led to the obtention of clear images of the targeted protein in its cellular context. Although the ligase-mediated labeling of protein in situ is a rich domain for which many cellular tools must be developed, many difficulties must be considered before entering a systematic use of this approach. CONCLUSIONS: In the present contribution, we added several steps of analytical characterization, both in vitro and in cellulo that were previously lacking. Furthermore, we show that the use of the click chemistry should be manipulated with care, as the claimed specificity might be not complete whenever living cells are used. Finally, we added another approach-the Halo Tag-to complete the previously suggested approaches for labelling proteins in cells, as we found difficult to strictly apply the previously reported methodology.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/enzimología , Ligasas/genética , Tiorredoxinas/metabolismo , Química Clic , Proteínas de Escherichia coli/metabolismo , Células HEK293 , Humanos , Ligasas/metabolismo , Lisina/química , Ingeniería de Proteínas , Procesamiento Proteico-Postraduccional , Ácido Tióctico/química , Tiorredoxinas/química , Tiorredoxinas/genética
4.
Proc Natl Acad Sci U S A ; 115(17): 4501-4506, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29632174

RESUMEN

The growth hormone secretagogue receptor (GHSR) and dopamine receptor (D2R) have been shown to oligomerize in hypothalamic neurons with a significant effect on dopamine signaling, but the molecular processes underlying this effect are still obscure. We used here the purified GHSR and D2R to establish that these two receptors assemble in a lipid environment as a tetrameric complex composed of two each of the receptors. This complex further recruits G proteins to give rise to an assembly with only two G protein trimers bound to a receptor tetramer. We further demonstrate that receptor heteromerization directly impacts on dopamine-mediated Gi protein activation by modulating the conformation of its α-subunit. Indeed, association to the purified GHSR:D2R heteromer triggers a different active conformation of Gαi that is linked to a higher rate of GTP binding and a faster dissociation from the heteromeric receptor. This is an additional mechanism to expand the repertoire of GPCR signaling modulation that could have implications for the control of dopamine signaling in normal and physiopathological conditions.


Asunto(s)
Dopamina/química , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Multimerización de Proteína , Receptores de Dopamina D2/química , Receptores de Ghrelina/química , Transducción de Señal , Dopamina/genética , Dopamina/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Humanos , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Receptores de Ghrelina/genética , Receptores de Ghrelina/metabolismo
5.
Molecules ; 26(5)2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33673598

RESUMEN

Melanin-concentrating hormone (MCH) is a 19 amino acid long peptide found in the brain of animals, including fishes, batrachians, and mammals. MCH is implicated in appetite and/or energy homeostasis. Antagonists at its receptor (MCH-R1) could be major tools (or ultimately drugs) to understand the mechanism of MCH action and to fight the obesity syndrome that is a worldwide societal health problem. Ever since the deorphanisation of the MCH receptor, we cloned, expressed, and characterized the receptor MCH-R1 and started a vast medicinal chemistry program aiming at the discovery of such usable compounds. In the present final work, we describe GPS18169, a pseudopeptide antagonist at the MCH-R1 receptor with an affinity in the nanomolar range and a Ki for its antagonistic effect in the 20 picomolar range. Its metabolic stability is rather ameliorated compared to its initial parent compound, the antagonist S38151. We tested it in an in vivo experiment using high diet mice. GPS18169 was found to be active in limiting the accumulation of adipose tissues and, correlatively, we observed a normalization of the insulin level in the treated animals, while no change in food or water consumption was observed.


Asunto(s)
Fármacos Antiobesidad/química , Obesidad/tratamiento farmacológico , Receptores de la Hormona Hipofisaria/antagonistas & inhibidores , Tejido Adiposo/efectos de los fármacos , Alquinos/química , Aminobutiratos/química , Animales , Fármacos Antiobesidad/farmacología , Apetito/efectos de los fármacos , Ácido Aspártico/química , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Ácido Glutámico/química , Glicina/análogos & derivados , Glicina/química , Células HEK293 , Hepatocitos/efectos de los fármacos , Homeostasis/efectos de los fármacos , Humanos , Insulina/metabolismo , Lactamas/química , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Relación Estructura-Actividad , Distribución Tisular , Triazoles/química
6.
Mol Pharmacol ; 98(5): 620-633, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32913139

RESUMEN

N-ribosyldihydronicotinamide:quinone oxidoreductase 2 (NQO2/QR2, Enzyme Commission number 1.10.99.2) is a cytosolic enzyme, abundant in the liver and variably expressed in mammalian tissues. Cloned 30 years ago, it was characterized as a flavoenzyme catalyzing the reduction of quinones and pseudoquinones. To do so, it uses exclusively N-alkyl nicotinamide derivatives, without being able to recognize NADH, the reference hydrure donor compound, in contrast to its next of a kind, NAD(P)H:quinone oxidoreductase 1 (NQO1). For a long time both enzymes have been considered as key detoxifying enzymes in quinone metabolism, but more recent findings point to a more toxifying function of NQO2, particularly with respect to ortho-quinones. In fact, during the reduction of substrates, NQO2 generates fairly unstable intermediates that reoxidize immediately back to the original quinone, creating a futile cycle, the byproducts of which are deleterious reactive oxygen species. Beside this peculiarity, it is a target for numerous drugs and natural compounds such as melatonin, chloroquine, imiquimod, resveratrol, piceatannol, quercetin, and other flavonoids. Most of these enzyme-ligand interactions have been documented by numerous crystallographic studies, and now NQO2 is one of the best represented proteins in the structural biology database. Despite evidence for a causative role in several important diseases, the functional role of NQO2 remains poorly explored. In the present review, we aimed at detailing the main characteristics of NQO2 from a molecular pharmacology perspective. By drawing a clear border between facts and speculations, we hope to stimulate the future research toward a better understanding of this intriguing drug target. SIGNIFICANCE STATEMENT: Evidence is reviewed on the prevalent toxifying function of N-ribosyldihydronicotinamide:quinone oxidoreductase 2 while catalyzing the reduction of ortho-quinones such as dopamine quinone. The product of this reaction is unstable and generates a futile but harmful cycle (substrate/product/substrate) associated with reactive oxygen species generation.


Asunto(s)
Quinona Reductasas/metabolismo , Quinonas/metabolismo , Animales , Humanos , Hígado/metabolismo , Especies Reactivas de Oxígeno/metabolismo
7.
Anal Biochem ; 589: 113491, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31676284

RESUMEN

Among the biological approaches to therapeutics, are the cells, such as CAR-T cells engineered or not, the antibodies armed or not, and the smaller protein scaffolds that can be modified to render them specific of other proteins, à la façon of antibodies. For several years, we explored ways to substitute antibodies by nanobodies (also known as VHHs), the smallest recognizing part of camelids' heavy-chain antibodies: production of those small proteins in host microorganisms, minute analyses, characterization, and qualification of their affinity towards designed targets. Here, we present three standard VHHs described in the literature: anti-albumin, anti-EGF receptor and anti-HER2, a typical cancer cell surface -associated protein. Because they differ slightly in global structure, they are good models to assess our body of analytical methodologies. The VHHs were expressed in several bacteria strains in order to identify and overcome the bottlenecks to obtain homogeneous preparations of this protein. A large panel of biophysical tools, ranging from spectroscopy to mass spectrometry, was here combined to assess VHH structural features and the impact of the disulfide bond. The routes are now ready to move to more complex VHHs raised against specific targets in numerous areas including oncology.


Asunto(s)
Camélidos del Nuevo Mundo/inmunología , Cadenas Pesadas de Inmunoglobulina , Receptor ErbB-2/inmunología , Albúmina Sérica Humana/inmunología , Anticuerpos de Dominio Único , Animales , Antígenos/inmunología , Clonación Molecular , Receptores ErbB/inmunología , Escherichia coli/genética , Humanos , Cadenas Pesadas de Inmunoglobulina/química , Cadenas Pesadas de Inmunoglobulina/aislamiento & purificación , Proteínas Recombinantes/inmunología , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/aislamiento & purificación
8.
Mol Pharmacol ; 95(3): 269-285, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30567956

RESUMEN

Quinone reductase 2 (QR2, E.C. 1.10.5.1) is an enzyme with a feature that has attracted attention for several decades: in standard conditions, instead of recognizing NAD(P)H as an electron donor, it recognizes putative metabolites of NADH, such as N-methyl- and N-ribosyl-dihydronicotinamide. QR2 has been particularly associated with reactive oxygen species and memory, strongly suggesting a link among QR2 (as a possible key element in pro-oxidation), autophagy, and neurodegeneration. In molecular and cellular pharmacology, understanding physiopathological associations can be difficult because of a lack of specific and powerful tools. Here, we present a thorough description of the potent, nanomolar inhibitor [2-(2-methoxy-5H-1,4b,9-triaza(indeno[2,1-a]inden-10-yl)ethyl]-2-furamide (S29434 or NMDPEF; IC50 = 5-16 nM) of QR2 at different organizational levels. We provide full detailed syntheses, describe its cocrystallization with and behavior at QR2 on a millisecond timeline, show that it penetrates cell membranes and inhibits QR2-mediated reactive oxygen species (ROS) production within the 100 nM range, and describe its actions in several in vivo models and lack of actions in various ROS-producing systems. The inhibitor is fairly stable in vivo, penetrates cells, specifically inhibits QR2, and shows activities that suggest a key role for this enzyme in different pathologic conditions, including neurodegenerative diseases.


Asunto(s)
Piridinas/farmacología , Alcaloides de Pirrolicidina/farmacología , Quinona Reductasas/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Hep G2 , Humanos , Masculino , Ratones , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
9.
J Biol Chem ; 293(23): 9064-9077, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29695506

RESUMEN

The GTPase RhoA is a major player in many different regulatory pathways. RhoA catalyzes GTP hydrolysis, and its catalysis is accelerated when RhoA forms heterodimers with proteins of the guanine nucleotide exchange factor (GEF) family. Neuroepithelial cell transforming gene 1 (Net1) is a RhoA-interacting GEF implicated in cancer, but the structural features supporting the RhoA/Net1 interaction are unknown. Taking advantage of a simple production and purification process, here we solved the structure of a RhoA/Net1 heterodimer with X-ray crystallography at 2-Å resolution. Using a panel of several techniques, including molecular dynamics simulations, we characterized the RhoA/Net1 interface. Moreover, deploying an extremely simple peptide-based scanning approach, we found that short peptides (penta- to nonapeptides) derived from the protein/protein interaction region of RhoA could disrupt the RhoA/Net1 interaction and thereby diminish the rate of nucleotide exchange. The most inhibitory peptide, EVKHF, spanning residues 102-106 in the RhoA sequence, displayed an IC50 of ∼100 µm without further modifications. The peptides identified here could be useful in further investigations of the RhoA/Net1 interaction region. We propose that our structural and functional insights might inform chemical approaches for transforming the pentapeptide into an optimized pseudopeptide that antagonizes Net1-mediated RhoA activation with therapeutic anticancer potential.


Asunto(s)
Proteínas Oncogénicas/química , Proteína de Unión al GTP rhoA/química , Secuencia de Aminoácidos , Antineoplásicos/química , Antineoplásicos/farmacología , Cristalografía por Rayos X , Descubrimiento de Drogas , Humanos , Simulación de Dinámica Molecular , Terapia Molecular Dirigida , Proteínas Oncogénicas/metabolismo , Péptidos/química , Péptidos/farmacología , Conformación Proteica/efectos de los fármacos , Mapas de Interacción de Proteínas/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Alineación de Secuencia , Proteína de Unión al GTP rhoA/metabolismo
10.
J Pharmacol Exp Ther ; 368(1): 59-65, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30389722

RESUMEN

In the 1980s, researchers used binding studies to show that there is a melatonin binding site in addition to the receptors described previously. It was first termed ML2 and then, in 1999, MT3 Purification efforts led to its identification as quinone reductase 2. Several lines of evidence support the notion that MT3 is the same as quinone reductase 2, including the detection and characterization of MT3 whenever quinone reductase 2 was added to various systems under various conditions. This evidence is discussed in this review, which summarizes the results of relevant cellular and animal experiments. The recent discovery that the quinone reductase 2 enzyme can be partly membrane-associated may unite the current body of evidence and allow us to conclude definitively that the third melatonin binding site, MT3 , is indeed quinone reductase 2.


Asunto(s)
Quinona Reductasas/metabolismo , Receptores de Melatonina/metabolismo , Animales , Sitios de Unión/fisiología , Humanos , Quinona Reductasas/química , Receptores de Melatonina/química
11.
Int J Mol Sci ; 20(13)2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31261773

RESUMEN

Human ether-a-gogo related gene (hERG) product is the membrane potassium channel Kv11.1, which is involved in the electrical activity of the heart. As such, it is a key player in the toxicity of many drug candidates. Therefore, having this protein at hand during earlier stages of drug discovery is important for preventing later toxicity. Furthermore, having a fair quantity of functional channels may help in the development of the necessary techniques for gaining insight in this channel structure. Thus, we performed a comparative study of methods for over-expressing a mutated but functional, hERG in different orthologous hosts, such as yeast, bacteria, insect and human cell lines. We also engineered the protein to test various constructs of a functional channel. We obtained a significant amount of a functional mutant channel from HEK cells that we thoroughly characterized. The present work paves the way for the expression of large amounts of this protein, with which protein crystallization or cryo-electronic microscopy will be attempted. This will be a way to gain information on the structure of the hERG active site and its modelization to obtain data on the pauses of various reference compounds from the pharmacopeia, as well as to gain information about the thermodynamics of the hERG/ligand relationship.


Asunto(s)
Canal de Potasio ERG1/genética , Ingeniería de Proteínas/métodos , Animales , Fraccionamiento Químico/métodos , Cristalografía por Rayos X/métodos , Canal de Potasio ERG1/química , Canal de Potasio ERG1/metabolismo , Células HEK293 , Humanos , Pichia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera , Xenopus
12.
Molecules ; 24(20)2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31618826

RESUMEN

Dunnione, a natural product isolated from the leaves of Streptocarpus dunnii (Gesneriaceae), acts as a substrate for quinone-reductases that may be associated with its antimalarial properties. Following our exploration of reactive oxygen species-producing compounds such as indolones, as possible new approaches for the research of new ways to treat this parasitosis, we explored derivatives of this natural product and their possible antiplasmodial and antimalarial properties, in vitro and in vivo, respectively. Apart from one compound, all the products tested had weak to moderate antiplasmodial activities, the best IC50 value being equal to 0.58 µM. In vivo activities in the murine model were moderate (at a dose of 50 mg/kg/mice, five times higher than the dose of chloroquine). These results encourage further pharmacomodulation steps to improve the targeting of the parasitized red blood cells and antimalarial activities.


Asunto(s)
Antimaláricos/química , Naftoquinonas/química , Quinona Reductasas/química , Animales , Antimaláricos/farmacología , Modelos Animales de Enfermedad , Células HeLa , Humanos , Ratones , Estructura Molecular , Naftoquinonas/farmacología , Quinona Reductasas/metabolismo , Especies Reactivas de Oxígeno/química , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato
13.
J Nat Prod ; 81(7): 1610-1618, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-29969260

RESUMEN

In an effort to find potent natural inhibitors of RhoA and p115 signaling G-proteins, a systematic in vitro evaluation using enzymatic and plasmonic resonance assays was undertaken on 11 317 plant extracts. The screening procedure led to the selection of the New Caledonian endemic species Meiogyne baillonii for a chemical investigation. Using a bioguided isolation procedure, three enediyne-γ-butyrolactones (1-3) and two enediyne-γ-butenolides (4 and 5), named sapranthins H-L, respectively, two enediyne carboxylic acid (6 and 7), two depsidones, stictic acid (8) and baillonic acid (9), aristolactams AIa and AIIa (10 and 11), and two aporphines, dehydroroemerine (12) and noraristolodione (13), were isolated from the ethyl acetate extract of the bark. The structures of the new compounds (1-6, 9, and 11) and their relative configurations were established by NMR spectroscopic analysis and by X-ray diffraction analysis for compound 9. Only stictic acid (8) exhibited a significant inhibiting activity of the RhoA-p115 complex, with an EC50 value of 0.19 ± 0.05 mM. This is the first time that a natural inhibitor of the complex RhoA-p115's activity was discovered from an HTS performed over a collection of higher plant extracts. Thus, stictic acid (8) could be used as the first reference compound inhibiting the interaction between RhoA and p115.


Asunto(s)
Annonaceae/química , Extractos Vegetales/farmacología , Factores de Intercambio de Guanina Nucleótido Rho/antagonistas & inhibidores , Proteína de Unión al GTP rhoA/antagonistas & inhibidores , Espectroscopía de Resonancia Magnética , Estructura Molecular , Corteza de la Planta/química , Extractos Vegetales/química
14.
Anal Biochem ; 519: 57-70, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-27993553

RESUMEN

Ubiquitin, a 76 amino acid protein, is a key component that contributes to cellular protein homeostasis. The specificity of this modification is due to a series of enzymes: ligases, attaching the ubiquitin to a lysine, and deubiquitinases, which remove it. More than a hundred of such proteins are implicated in the regulation of protein turnover. Their specificities are only partially understood. We chemically synthesized ubiquitin, attached it to lysines belonging to the protein sequences known to be ubiquitinated. We chose the model protein "murine double minute 2" (mdm2), a ubiquitin ligase, itself ubiquitinated and deubiquitinated. We folded the ubiquitinated peptides and checked their tridimensional conformation. We assessed the use of these substrates with a series of fifteen deubiquitinases to show the potentiality of such an enzymological technique. By manipulating the sequence of the peptide on which ubiquitin is attached, we were able to detect differences in the enzyme/substrate recognition, and to determine that these differences are deubiquitinase-dependent. This approach could be used to understand the substrate/protein relationship between the protagonists of this reaction. The methodology could be customized for a given substrate and used to advance our understanding of the key amino acids responsible for the deubiquitinase specificities.


Asunto(s)
Lisina/metabolismo , Fragmentos de Péptidos/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitina/metabolismo , Ubiquitinación , Cromatografía en Gel , Dicroismo Circular , Humanos , Lisina/química , Fragmentos de Péptidos/química , Procesamiento Proteico-Postraduccional , Proteolisis , Proteínas Proto-Oncogénicas c-mdm2/química , Especificidad por Sustrato , Ubiquitina/química , Ubiquitina-Proteína Ligasas/metabolismo
15.
Molecules ; 22(2)2017 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-28146103

RESUMEN

Indolone-N-oxides have antiplasmodial properties against Plasmodium falciparum at the erythrocytic stage, with IC50 values in the nanomolar range. The mechanism of action of indolone derivatives involves the production of free radicals, which follows their bioreduction by an unknown mechanism. In this study, we hypothesized that human quinone reductase 2 (hQR2), known to act as a flavin redox switch upon binding to the broadly used antimalarial chloroquine, could be involved in the activity of the redox-active indolone derivatives. Therefore, we investigated the role of hQR2 in the reduction of indolone derivatives. We analyzed the interaction between hQR2 and several indolone-type derivatives by examining enzymatic kinetics, the substrate/protein complex structure with X-ray diffraction analysis, and the production of free radicals with electron paramagnetic resonance. The reduction of each compound in cells overexpressing hQR2 was compared to its reduction in naïve cells. This process could be inhibited by the specific hQR2 inhibitor, S29434. These results confirmed that the anti-malarial activity of indolone-type derivatives was linked to their ability to serve as hQR2 substrates and not as hQR2 inhibitors as reported for chloroquine, leading to the possibility that substrate of hQR2 could be considered as a new avenue for the design of new antimalarial compounds.


Asunto(s)
Antimaláricos/farmacología , Indoles/farmacología , Plasmodium falciparum/efectos de los fármacos , Quinona Reductasas/metabolismo , Animales , Antimaláricos/química , Células CHO , Cricetulus , Radicales Libres/metabolismo , Humanos , Indoles/química , Modelos Moleculares , Estructura Molecular , Plasmodium falciparum/metabolismo , Unión Proteica , Conformación Proteica , Quinona Reductasas/química , Especies Reactivas de Oxígeno/metabolismo
16.
Biochemistry ; 55(1): 38-48, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26701065

RESUMEN

G protein-coupled receptors (GPCRs) are integral membrane proteins that play a pivotal role in signal transduction. Understanding their dynamics is absolutely required to get a clear picture of how signaling proceeds. Molecular characterization of GPCRs isolated in detergents nevertheless stumbles over the deleterious effect of these compounds on receptor function and stability. We explored here the potential of a styrene-maleic acid polymer to solubilize receptors directly from their lipid environment. To this end, we used two GPCRs, the melatonin and ghrelin receptors, embedded in two membrane systems of increasing complexity, liposomes and membranes from Pichia pastoris. The styrene-maleic acid polymer was able, in both cases, to extract membrane patches of a well-defined size. GPCRs in SMA-stabilized lipid discs not only recognized their ligand but also transmitted a signal, as evidenced by their ability to activate their cognate G proteins and recruit arrestins in an agonist-dependent manner. Besides, the purified receptor in lipid discs undergoes all specific changes in conformation associated with ligand-mediated activation, as demonstrated in the case of the ghrelin receptor with fluorescent conformational reporters and compounds from distinct pharmacological classes. Altogether, these data highlight the potential of styrene-maleic stabilized lipid discs for analyzing the molecular bases of GPCR-mediated signaling in a well-controlled membrane-like environment.


Asunto(s)
Proteínas de Unión al GTP/aislamiento & purificación , Lípidos/química , Liposomas/química , Maleatos/química , Nanoestructuras/química , Poliestirenos/química , Animales , Células CHO , Cricetulus , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Humanos , Modelos Moleculares , Pichia/química , Pichia/metabolismo , Receptores de Ghrelina/química , Receptores de Ghrelina/aislamiento & purificación , Receptores de Ghrelina/metabolismo , Receptores de Melatonina/química , Receptores de Melatonina/aislamiento & purificación , Receptores de Melatonina/metabolismo , Solubilidad
17.
Biochimie ; 222: 195-202, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38508513

RESUMEN

Among the properties melatonin is claimed to possess, are the immuno-inflammation inductive capacities that would be responsible of some of the paramount of activities melatonin is reported to have in most of the human pathological conditions. In the present paper, we measured the effect of melatonin on established cellular models of immuno-inflammation, and found none. The discrepancies are discussed, especially because those properties are reported at pharmacological concentration (1 µM and beyond) at which the melatonin receptors are desensitized by internalization, leading to putative non-receptor-dependent mechanism of action.


Asunto(s)
Inflamación , Melatonina , Melatonina/farmacología , Melatonina/metabolismo , Humanos , Inflamación/metabolismo , Receptores de Melatonina/metabolismo , Animales
18.
Methods Mol Biol ; 2550: 315-321, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36180702

RESUMEN

The third melatonin binding site MT3 turned out to be an enzyme, NQO2 (E.C. 1.6.99.2). Its catalytic activity is inhibited by melatonin with an IC50 in the 50-100 µM range. Some of the functions of melatonin at pharmacological concentrations (1 µM and above) might be explained by this inhibition capacity of melatonin at NQO2. In order to determine precisely these parameters, it is required to comprehend the basic enzymology of this enzyme. In the following chapter, we present the basic conditions of measuring NQO2 catalytic activities and inhibition.


Asunto(s)
Melatonina , Quinona Reductasas , Sitios de Unión , Melatonina/metabolismo , Melatonina/farmacología , Quinona Reductasas/química , Quinona Reductasas/metabolismo
19.
Methods Mol Biol ; 2550: 283-289, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36180699

RESUMEN

Melatonin, (N-acetyl-5-methoxytryptamine), is a neurohormone which possesses a wide range of biological effects. The effects mediated by melatonin are in part attributed to the antioxidant properties of the molecule. For a long time, melatonin had been described as a ligand of a putative "receptor" present in mammalian brains named MT3. Several studies were thus carried out with the goal of clarifying the nature of this melatonin "receptor." The experimental setup of the binding measurements is unusual. The present chapter aims at describing this technique. This binding site was confirmed independently by several groups, and it was eventually demonstrated that MT3 was the enzyme quinone reductase 2 (NQO2).


Asunto(s)
Melatonina , Quinona Reductasas , 5-Metoxitriptamina , Animales , Antioxidantes , Sitios de Unión , Ligandos , Mamíferos/metabolismo , Melatonina/metabolismo , Quinona Reductasas/metabolismo , Receptores de Melatonina/metabolismo
20.
Methods Mol Biol ; 2550: 305-314, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36180701

RESUMEN

To ensure the physical interaction between a protein and its ligand, many techniques can be applied. One of them, isothermal titration calorimetry (ITC), measures the heat exchange between a forming molecular complex and its milieu. From this heat exchange, it is possible to acquire the thermodynamic parameters, the binding stoichiometry and the affinity constant (Ka) between the two interacting binding partners, which can then be used to determine the dissociation constant (Kd). We made use of ITC to determine the true Kd of melatonin for its putative receptor MT3, also known as the enzyme quinone reductase 2 (NQO2). In this chapter, we describe the step-by-step procedure for performing this experiment and extend it to 2-iodomelatonin, a melatonin derivative that was used in the initial identification and characterization of MT3. The dissociation constants of melatonin and 2-iodomelatonin toward NQO2 derived from these experiments are in line with data reported previously, albeit using alternative techniques.


Asunto(s)
Melatonina , Quinona Reductasas , Calorimetría/métodos , Humanos , Ligandos , Melatonina/metabolismo , Unión Proteica , Quinona Reductasas/metabolismo , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA