Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Biol Chem ; 285(16): 12445-53, 2010 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-20177057

RESUMEN

Grp170 and Hsp110 proteins constitute two evolutionary distinct branches of the Hsp70 family that share the ability to function as nucleotide exchange factors (NEFs) for canonical Hsp70s. Although the NEF mechanism of the cytoplasmic Hsp110s is well understood, little is known regarding the mechanism used by Grp170s in the endoplasmic reticulum. In this study, we compare the yeast Grp170 Lhs1 with the yeast Hsp110 Sse1. We find that residues important for Sse1 NEF activity are conserved in Lhs1 and that mutations in these residues in Lhs1 compromise NEF activity. As previously reported for Sse1, Lhs1 requires ATP to trigger nucleotide exchange in its cognate Hsp70 partner Kar2. Using site-specific cross-linking, we show that the nucleotide-binding domain (NBD) of Lhs1 interacts with the NBD of Kar2 face to face, and that Lhs1 contacts the side of the Kar2 NBD via its protruding C-terminal alpha-helical domain. To directly address the mechanism of nucleotide exchange, we have compared the hydrogen-exchange characteristics of a yeast Hsp70 NBD (Ssa1) in complex with either Sse1 or Lhs1. We find that Lhs1 and Sse1 induce very similar changes in the conformational dynamics in the Hsp70. Thus, our findings demonstrate that despite some differences between Hsp110 and Grp170 proteins, they use a similar mechanism to trigger nucleotide exchange.


Asunto(s)
Glicoproteínas/metabolismo , Proteínas del Choque Térmico HSP110/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Sitios de Unión/genética , Reactivos de Enlaces Cruzados , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicoproteínas/química , Glicoproteínas/genética , Proteínas del Choque Térmico HSP110/química , Proteínas del Choque Térmico HSP110/genética , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/genética , Complejos Multiproteicos , Mutagénesis Sitio-Dirigida , Conformación Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
2.
J Biol Chem ; 285(5): 3227-34, 2010 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-19920147

RESUMEN

Yeast Zuotin and Ssz are members of the conserved Hsp40 and Hsp70 chaperone families, respectively, but compared with canonical homologs, they atypically form a stable heterodimer termed ribosome-associated complex (RAC). RAC acts as co-chaperone for another Hsp70 to assist de novo protein folding. In this study, we identified the molecular basis for the unusual Hsp70/Hsp40 pairing using amide hydrogen exchange (HX) coupled with mass spectrometry and mutational analysis. Association of Ssz with Zuotin strongly decreased the conformational dynamics mainly in the C-terminal domain of Ssz, whereas Zuotin acquired strong conformational stabilization in its N-terminal segment. Deletion of the highly flexible N terminus of Zuotin abolished stable association with Ssz in vitro and caused a phenotype resembling the loss of Ssz function in vivo. Thus, the C-terminal domain of Ssz, the N-terminal extension of Zuotin, and their mutual stabilization are the major structural determinants for RAC assembly. We furthermore found dynamic changes in the J-domain of Zuotin upon complex formation that might be crucial for RAC co-chaperone function. Taken together, we present a novel mechanism for converting Zuotin and Ssz chaperones into a functionally active dimer.


Asunto(s)
Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Chaperonas Moleculares/fisiología , Ribosomas/química , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Análisis Mutacional de ADN , Dimerización , Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/fisiología , Espectrometría de Masas , Chaperonas Moleculares/química , Fenotipo , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química
3.
Proc Natl Acad Sci U S A ; 105(43): 16519-24, 2008 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-18948593

RESUMEN

Hsp110 proteins are relatives of canonical Hsp70 chaperones and are expressed abundantly in the eukaryotic cytosol. Recently, it has become clear that Hsp110 proteins are essential nucleotide exchange factors (NEFs) for Hsp70 chaperones. Here, we report the architecture of the complex between the yeast Hsp110, Sse1, and its cognate Hsp70 partner, Ssa1, as revealed by hydrogen-deuterium exchange analysis and site-specific cross-linking. The two nucleotide-binding domains (NBDs) of Sse1 and Ssa1 are positioned to face each other and form extensive contacts between opposite lobes of their NBDs. A second contact with the periphery of the Ssa1 NBD lobe II is likely mediated via the protruding C-terminal alpha-helical subdomain of Sse1. To address the mechanism of catalyzed nucleotide exchange, we have compared the hydrogen exchange characteristics of the Ssa1 NBD in complex with either Sse1 or the yeast homologs of the NEFs HspBP1 and Bag-1. We find that Sse1 exploits a Bag-1-like mechanism to catalyze nucleotide release, which involves opening of the Ssa1 NBD by tilting lobe II. Thus, Hsp110 proteins use a unique binding mode to catalyze nucleotide release from Hsp70s by a functionally convergent mechanism.


Asunto(s)
Proteínas del Choque Térmico HSP110/química , Proteínas del Choque Térmico HSP110/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Sitios de Unión , Proteínas de Unión al ADN , Medición de Intercambio de Deuterio , Proteínas de Choque Térmico , Proteínas de Transporte de Membrana , Proteínas de Transporte de Membrana Mitocondrial , Chaperonas Moleculares , Nucleótidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción
4.
FEBS Lett ; 583(14): 2407-13, 2009 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-19560460

RESUMEN

Here we present a method to purify large amounts of highly pure and stably arrested ribosome-nascent chain complexes (RNCs) from Escherichia coli cells. It relies on the combined use of translation-arrest sequences to generate nascent polypeptides of specified length and subsequent tag purification of the RNCs. Moreover, we adapted this method for the in vivo production of RNCs with specific isotope labeling of the nascent chains for nuclear magnetic resonance (NMR) studies. This method opens therefore possibilities for a wide range of biochemical and structural studies exploring conformations of nascent chains during the early steps of protein folding and targeting.


Asunto(s)
Proteínas de Escherichia coli/química , Péptidos/aislamiento & purificación , Biosíntesis de Proteínas , Ribosomas/química , Secuencia de Aminoácidos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Sustancias Macromoleculares , Datos de Secuencia Molecular , Conformación Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ribosomas/metabolismo
5.
J Biol Chem ; 283(14): 8877-84, 2008 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-18218635

RESUMEN

Hsp110 proteins constitute a subfamily of the Hsp70 chaperones and are potent nucleotide exchange factors (NEFs) for canonical Hsp70s of the eukaryotic cytosol. Here, we show that the NEF activity of the yeast Hsp110 homologue Sse1 itself is controlled by nucleotide. Nucleotide binding results in formation of a stabilized conformation of Sse1 that is required for association with the yeast Hsp70 Ssa1. The interaction triggers release of bound ADP from Ssa1, but nucleotide persists bound to Sse1 in the complex. Surprisingly, removal of this nucleotide does not affect the integrity of the complex. Instead, rebinding of ATP to the Hsp70 prompts the dissociation of the complex. Our data demonstrate that in contrast to previously characterized NEFs for Hsp70 chaperones, the NEF activity of Sse1 requires nucleotide binding and let us propose a new model for Hsp110 function.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas del Choque Térmico HSP110/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Modelos Biológicos , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Difosfato/metabolismo , Citosol/metabolismo , Unión Proteica/fisiología
6.
J Biomol NMR ; 37(3): 187-93, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17221288

RESUMEN

We describe a simple approach to classify amino acid residue types in NMR spectra of proteins for supporting the backbone resonance assignments. It makes use of the differences in biosynthetic pathways of the 20 amino acids in Escherichia coli. Therefore, it is distinct from the parameters routinely exploited in the backbone resonance assignment such as chemical shifts and spin topology information. The combination of biosynthetically directed fractional 13C-labeling and uniform 15N-labeling enables us to obtain both residue-type specific information and sequential connectivities from a single protein sample. The residue-type classification exploiting biosynthetic pathways can be used for accelerating the conventional backbone assignment procedure.


Asunto(s)
Isótopos de Carbono/química , Espectroscopía de Resonancia Magnética/métodos , Proteínas/química , Aminoácidos/química , Escherichia coli/metabolismo , Glucosa/química , Espectroscopía de Resonancia Magnética/instrumentación , Modelos Biológicos , Estructura Molecular , Isótopos de Nitrógeno/química , Conformación Proteica
7.
Proc Natl Acad Sci U S A ; 103(42): 15445-50, 2006 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-17032756

RESUMEN

The use of 1H-1H nuclear Overhauser effects (NOE) for structural studies of uniformly deuterated polypeptide chains in large structures is investigated by model calculations and NMR experiments. Detailed analysis of the evolution of the magnetization during 1H-1H NOE experiments under slow-motion conditions shows that the maximal 1H-1H NOE transfer is independent of the overall rotational correlation time, even in the presence of chemical exchange with the bulk water, provided that the mixing time is adjusted for the size of the structure studied. 1H-1H NOE buildup measurements were performed for the 472-kDa complex of the 72-kDa cochaperonin GroES with a 400-kDa single-ring variant of the chaperonin GroEL (SR1). These experiments demonstrate that multidimensional NOESY experiments with cross-correlated relaxation-enhanced polarization transfer and transverse relaxation-optimized spectroscopy elements can be applied to structures of molecular masses up to several hundred kilodaltabs, which opens new possibilities for studying functional interactions in large maromolecular assemblies in solution.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Péptidos/química , Conformación Proteica , Protones , Chaperonina 10/química , Chaperonina 60/química , Deuterio/química , Proteínas de Escherichia coli/química , Modelos Teóricos , Datos de Secuencia Molecular , Agua/química
8.
Proc Natl Acad Sci U S A ; 102(36): 12748-53, 2005 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-16116078

RESUMEN

The reaction cycle and the major structural states of the molecular chaperone GroEL and its cochaperone, GroES, are well characterized. In contrast, very little is known about the nonnative states of the substrate polypeptide acted on by the chaperonin machinery. In this study, we investigated the substrate protein human dihydrofolate reductase (hDHFR) while bound to GroEL or to a single-ring analog, SR1, by NMR spectroscopy in solution under conditions where hDHFR was efficiently recovered as a folded, enzymatically active protein from the stable complexes upon addition of ATP and GroES. By using the NMR techniques of transverse relaxation-optimized spectroscopy (TROSY), cross-correlated relaxation-induced polarization transfer (CRIPT), and cross-correlated relaxation-enhanced polarization transfer (CRINEPT), bound hDHFR could be observed directly. Measurements of the buildup of hDHFR NMR signals by different magnetization transfer mechanisms were used to characterize the dynamic properties of the NMR-observable parts of the bound substrate. The NMR data suggest that the bound state includes random coil conformations devoid of stable native-like tertiary contacts and that the bound hDHFR might best be described as a dynamic ensemble of randomly structured conformers.


Asunto(s)
Chaperonina 60/química , Chaperonina 60/metabolismo , Resonancia Magnética Nuclear Biomolecular , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/metabolismo , Chaperonina 10/química , Chaperonina 10/metabolismo , Humanos , Leucina/química , Unión Proteica , Pliegue de Proteína , Especificidad por Sustrato
9.
J Biomol NMR ; 29(3): 289-97, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15213427

RESUMEN

A general method for stable-isotope labeling of large proteins is introduced and applied for studies of the E. coli GroE chaperone proteins by solution NMR. In addition to enabling the residue-specific (15)N-labeling of proteins on a highly deuterated background, it is also an efficient approach for uniform labeling. The method meets the requirements of high-level deuteration, minimal cross-labeling and high protein yield, which are crucial for NMR studies of structures with sizes above 150 kDa. The results obtained with the new protocol are compared to other strategies for protein labeling, and evaluated with regard to the influence of external factors on the resulting isotope labeling patterns. Applications with the GroE system show that these strategies are efficient tools for studies of structure, dynamics and intermolecular interactions in large supramolecular complexes, when combined with TROSY- and CRINEPT-based experimental NMR schemes.


Asunto(s)
Chaperonina 60/química , Espectroscopía de Resonancia Magnética/métodos , Proteínas/química , Chaperonina 10/química , Reactivos de Enlaces Cruzados/farmacología , Deuterio/química , Escherichia coli/metabolismo , Humanos , Isótopos , Nitrógeno/química , Unión Proteica , Proteínas Recombinantes/química , Programas Informáticos , Tetrahidrofolato Deshidrogenasa/química
10.
J Am Chem Soc ; 124(41): 12144-53, 2002 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-12371854

RESUMEN

Transverse relaxation-optimized spectroscopy (TROSY) or generation of heteronuclear multiple quantum coherences during the frequency labeling period and TROSY during the acquisition period have been combined either with cross-correlated relaxation-induced polarization transfer (CRIPT) or cross-correlated relaxation-enhanced polarization transfer (CRINEPT) to obtain two-dimensional (2D) solution NMR correlation spectra of (15)N,(2)H-labeled homo-oligomeric macromolecules with molecular weights from 110 to 800 kDa. With the experimental conditions used, the line widths of the TROSY-components of the (1)H- and (15)N-signals were of the order of 60 Hz at 400 kDa, whereas, for structures of size 800 kDa, the line widths were about 75 Hz for (15)N and 110 Hz for (1)H. This paper describes the experimental schemes used and details of their setup for individual measurements. The performance of NMR experiments with large structures depends critically on the choice of the polarization transfer times, the relaxation delays between subsequent recordings, and the water-handling routines. Optimal transfer times for 2D [(15)N,(1)H]-CRIPT-TROSY experiments in H(2)O solutions were found to be 6 ms for a molecular weight of approximately 200 kDa, 2.8 ms for 400 kDa, and 1.4 ms for 800 kDa. These data validate theoretical predictions of inverse proportionality between optimal transfer time and size of the structure. The proton longitudinal relaxation times in H(2)O solution were found to be of the order of 0.8 s for structure sizes around 200 kDa, 0.4 s at 400 kDa, and 0.3 s at 800 kDa, which enabled the use of recycle times below 1 s. Since improper water handling results in severe signal loss, the water resonance was kept along the z-axis during the entire duration of the experiments by adjusting each water flip-back pulse individually.


Asunto(s)
Chaperonina 60/química , Resonancia Magnética Nuclear Biomolecular/métodos , Deuterio , Escherichia coli/química , Isótopos de Nitrógeno , Conformación Proteica , Protones , Agua/química
11.
Eukaryot Cell ; 2(1): 170-80, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12582134

RESUMEN

The so far largely uncharacterized central carbon metabolism of the yeast Pichia stipitis was explored in batch and glucose-limited chemostat cultures using metabolic-flux ratio analysis by nuclear magnetic resonance. The concomitantly characterized network of active metabolic pathways was compared to those identified in Saccharomyces cerevisiae, which led to the following conclusions. (i) There is a remarkably low use of the non-oxidative pentose phosphate (PP) pathway for glucose catabolism in S. cerevisiae when compared to P. stipitis batch cultures. (ii) Metabolism of P. stipitis batch cultures is fully respirative, which contrasts with the predominantly respiro-fermentative metabolic state of S. cerevisiae. (iii) Glucose catabolism in chemostat cultures of both yeasts is primarily oxidative. (iv) In both yeasts there is significant in vivo malic enzyme activity during growth on glucose. (v) The amino acid biosynthesis pathways are identical in both yeasts. The present investigation thus demonstrates the power of metabolic-flux ratio analysis for comparative profiling of central carbon metabolism in lower eukaryotes. Although not used for glucose catabolism in batch culture, we demonstrate that the PP pathway in S. cerevisiae has a generally high catabolic capacity by overexpressing the Escherichia coli transhydrogenase UdhA in phosphoglucose isomerase-deficient S. cerevisiae.


Asunto(s)
Metabolismo Energético/fisiología , Glucosa/deficiencia , Pichia/metabolismo , Saccharomyces cerevisiae/metabolismo , Aminoácidos/biosíntesis , Anemia Hemolítica Congénita no Esferocítica , Respiración de la Célula/fisiología , Células Cultivadas , Fermentación/fisiología , Glucosa-6-Fosfato Isomerasa/genética , Malatos/metabolismo , NADP Transhidrogenasas/metabolismo , Fosforilación Oxidativa , Vía de Pentosa Fosfato/fisiología
12.
Nature ; 418(6894): 207-11, 2002 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-12110894

RESUMEN

Biomacromolecular structures with a relative molecular mass (M(r)) of 50,000 to 100,000 (50K 100K) have been generally considered to be inaccessible to analysis by solution NMR spectroscopy. Here we report spectra recorded from bacterial chaperonin complexes ten times this size limit (up to M(r) 900K) using the techniques of transverse relaxation-optimized spectroscopy and cross-correlated relaxation-enhanced polarization transfer. These techniques prevent deterioration of the NMR spectra by the rapid transverse relaxation of the magnetization to which large, slowly tumbling molecules are otherwise subject. We tested the resolving power of these techniques by examining the isotope-labelled homoheptameric co-chaperonin GroES (M(r) 72K), either free in solution or in complex with the homotetradecameric chaperonin GroEL (M(r) 800K) or with the single-ring GroEL variant SR1 (M(r) 400K). Most amino acids of GroES show the same resonances whether free in solution or in complex with chaperonin; however, residues 17 32 show large chemical shift changes on binding. These amino acids belong to a mobile loop region of GroES that forms contacts with GroEL. This establishes the utility of these techniques for solution NMR studies that should permit the exploration of structure, dynamics and interactions in large macromolecular complexes.


Asunto(s)
Chaperonina 10/química , Chaperonina 10/metabolismo , Chaperonina 60/química , Chaperonina 60/metabolismo , Resonancia Magnética Nuclear Biomolecular/métodos , Deuterio/metabolismo , Sustancias Macromoleculares , Modelos Moleculares , Peso Molecular , Conformación Proteica , Soluciones
13.
J Bacteriol ; 184(1): 152-64, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11741855

RESUMEN

The intracellular carbon flux distribution in wild-type and pyruvate kinase-deficient Escherichia coli was estimated using biosynthetically directed fractional 13C labeling experiments with [U-13C6]glucose in glucose- or ammonia-limited chemostats, two-dimensional nuclear magnetic resonance (NMR) spectroscopy of cellular amino acids, and a comprehensive isotopomer model. The general response to disruption of both pyruvate kinase isoenzymes in E. coli was a local flux rerouting via the combined reactions of phosphoenolpyruvate (PEP) carboxylase and malic enzyme. Responses in the pentose phosphate pathway and the tricarboxylic acid cycle were strongly dependent on the environmental conditions. In addition, high futile cycling activity via the gluconeogenic PEP carboxykinase was identified at a low dilution rate in glucose-limited chemostat culture of pyruvate kinase-deficient E. coli, with a turnover that is comparable to the specific glucose uptake rate. Furthermore, flux analysis in mutant cultures indicates that glucose uptake in E. coli is not catalyzed exclusively by the phosphotransferase system in glucose-limited cultures at a low dilution rate. Reliability of the flux estimates thus obtained was verified by statistical error analysis and by comparison to intracellular carbon flux ratios that were independently calculated from the same NMR data by metabolic flux ratio analysis.


Asunto(s)
Escherichia coli/metabolismo , Isoenzimas/deficiencia , Piruvato Quinasa/deficiencia , Regulación Alostérica , Amoníaco/metabolismo , Técnicas Bacteriológicas , Isótopos de Carbono , Ciclo del Ácido Cítrico , Glucosa/deficiencia , Glucosa/metabolismo , Glucólisis , Isoenzimas/genética , Malato Deshidrogenasa/metabolismo , Modelos Biológicos , Vía de Pentosa Fosfato , Fosfoenolpiruvato Carboxilasa/metabolismo , Piruvato Quinasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA